问题描述
我们知道,整数做除法时,有时得到有限小数,有时得到无限循环小数。
如果我们把有限小数的末尾加上无限多个0,它们就有了统一的形式。
本题的任务是:在上面的约定下,求整数除法小数点后的第n位开始的3位数。
输入格式
一行三个整数:a b n,用空格分开。a是被除数,b是除数,n是所求的小数后位置(0<a,b,n<1000000000)
输出格式
一行3位数字,表示:a除以b,小数后第n位开始的3位数字。
样例输入1
1 8 1
样例输出1
125
样例输入2
1 8 3
样例输出2
500
样例输入3
282866 999000 6
样例输出3
914
解题思路
为了输出除法的每一位,需要做一下递推,假设被除数和除数分别是a和b,则a/b是他们的整数部分,之后令a = (a%b)*10,可得到下一个小数位的被除数,a/b为该位的小数位,依次类推。
开一个map,记录每次的被除数及其位置,如果要记录的被除数已经存在,则可判断这是一个无限循环小数。记录无限循环小数时可使用start记录循环开始位置,len记录一个循环的长度,当位置index大于等于start时,index位置的小数位等于start+(index-start)%len位置的小数位。
#include<iostream>
#include<vector>
#include<map>
using namespace std;
//开始循环的位置,循环长度,当前位置
int start = -1,len = -1,Count = 1;
long long a,b,n;
map<long long,int> achieved;
vector<int> numbers;
int main(){
scanf("%lld %lld %lld",&a,&b,&n);
int temp = a/b;
a = (a%b)*10;
numbers.push_back(temp);
while(a!=0){
if(achieved.count(a)!=0){
start = achieved[a];
len = Count-start;
break;
}
achieved[a] = Count++;
temp = a/b;
numbers.push_back(temp);
a = (a%b)*10;
}
//有限小数
if(start == -1){
for(int i = n;i<=n+2;i++){
if(i<numbers.size()) printf("%d",numbers[i]);
else printf("0");
}
}else{//无限循环小数
for(int i = n;i<=n+2;i++){
if(i<start) printf("%d",numbers[i]);
else printf("%d",numbers[start+(i-start)%len]);
}
}
return 0;
}