自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 【论文笔记】Knowledge Base Question Answering: A Semantic Parsing Perspective

作者从语义解析(semantic parsing)的角度,提出了KBQA的两大挑战,模式级复杂性(schema complexity)和事实级复杂性(fact complexity),介绍了常用的数据集、方法、指标等,并对KBQA未来的发展提出了自己的想法。

2023-06-21 11:17:59 426 1

原创 KBQA学习资料

RDF 和 SPARQL 初探:以维基数据为例【知识图谱】SPARQL入门

2023-06-12 18:39:10 147 1

原创 比赛总结:GAIIC 2023 全球人工智能技术创新大赛—算法挑战赛

基于复旦的fnlp/bart-base-chinese模型,因比赛数据的特殊性,先在比赛数据集上构造DAE预训练任务,使模型适应比赛数据。之后进行任务训练、验证、调参、测试。从0开始入门nlp,学到很多,再接再厉。主要提分点在预训练、trick、融合。如果不限制融合,融才是硬道理!

2023-05-19 23:44:01 829

原创 论文笔记:Complex Knowledge Base Question Answering: A Survey

2022 Complex Knowledge Base Question Answering: A Survey注:此文仅关注基于IR的KBQA,基于SP的KBQA请看原文。

2023-03-18 15:44:53 404 1

原创 论文笔记:How Does NLP Benefit Legal System: A Summary of Legal Artificial Intelligence

法律任务的三大挑战仍有待解决。知识建模、法律推理和可解释性是 LegalAI 能够可靠地服务于法律领域的基础。现有的一些方法正试图解决这些问题,但研究人员还有很长的路要走。未来,对于这些现有任务,研究人员可以专注于解决 LegalAI 结合基于嵌入和基于符号的方法的三个最紧迫的挑战。对于还没有数据集或者数据集不够大的任务,我们可以尝试构建一个大规模高质量的数据集或者使用few-shot或者zero-shot的方法来解决这些问题。此外,我们需要认真对待 LegalAI 的伦理问题。

2023-03-09 14:23:37 400

原创 现存KGSQA系统的组成/优缺点

现存KGSQA系统的组成/优缺点,共17篇论文。

2023-02-15 17:53:58 204

原创 KGSQA学习笔记

知识图问答 (KGQA) 系统使用户能够从知识图 (KG) 中检索数据,而无需完全了解 KG 模式。用户可以通过以自然语言问题 (NLQ) 的形式表达他们的信息需求来从 KG 获取数据,而不是使用特定的正式查询语言来制定精确的查询。需要完成许多子任务才能开发出性能良好的 KGQA 系统——例如,实体链接、关系链接和答案检索。

2023-02-14 17:04:43 636

转载 【斯坦福CS224N】笔记——深度自然语言处理Natural Language Processing with Deep Learning

【斯坦福CS224N】笔记——深度自然语言处理Natural Language Processing with Deep Learning

2022-11-22 19:33:02 342

原创 Tensorflow实践报错汇总

如果项目代码基于tensorflow1.0,而自己机器上安装的是tensorflow2.0,则会出现兼容问题,可用以下方法解决。报错 AttributeError: module ‘tensorflow‘ has no attribute ‘compat’如果解决版本问题时采用如下方式。..................

2022-08-11 12:18:00 1702

原创 Python3学习之路 day1

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录一、六大数据类型(一)Number 数字(二)String 字符串(三)List 列表(四)Tuple 元组(五)Set 集合(六)Dictionary 字典一、六大数据类型不可变数据:number、tuple、string可变数据:list、set、dictionary(一)Number 数字int、float、boolean、complex(复数)常用数学函数:abs(x)pow(x,y) //需导入mat

2020-09-27 23:25:24 88

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除