论文笔记:How Does NLP Benefit Legal System: A Summary of Legal Artificial Intelligence

标题:How Does NLP Benefit Legal System: A Summary of Legal Artificial Intelligence
原文链接https://aclanthology.org/2020.acl-main.466/
作者:Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang Zhang, Zhiyuan Liu, Maosong Sun
发表年份:2020
收录期刊:ACL2020
Codehttps://github.com/thunlp/CLAIM

摘要:法律人工智能 (LegalAI) 专注于应用人工智能技术,尤其是自然语言处理技术,使法律领域的任务受益。近年来,LegalAI 迅速引起了 AI 研究人员和法律专业人士的越来越多的关注,因为 LegalAI 有利于法律体系,将法律专业人士从文书工作的迷宫中解放出来。法律专业人士经常思考如何从基于规则和基于符号的方法解决任务,而 NLP 研究人员更多地关注数据驱动和嵌入方法。在本文中,我们描述了 LegalAI 的历史、现状和未来研究方向。我们从法律专业人士和 NLP 研究人员的角度来说明任务,并展示 LegalAI 中的几个代表性应用。我们进行实验并对现有作品的优缺点进行深入分析,以探索未来可能的方向。

以下为正文

在这里插入图片描述

引言

近年来,随着深度学习的快速发展,研究人员开始将深度学习技术应用于LegalAI。

主流方法:基于符号的方法,基于嵌入的方法。基于符号的方法将可解释的手工符号应用于法律任务,更侧重于利用可解释的法律知识来推理法律文件中的符号,如事件和关系。基于嵌入的方法旨在设计高效的神经模型以实现更好的性能,试图从大规模数据中学习用于预测的潜在特征。但是,可解释性强的符号模型并不足够有效,而性能更好的嵌入方法通常可解释性差,且可能会给法律体系带来性别偏见和种族歧视等伦理问题。

针对这两种主流方法,总结了共性的三大挑战

  1. 知识建模:法律文本形式化良好,LegalAI 中有许多领域知识和概念。如何运用法律知识具有重要意义。
  2. 法律推理:尽管 NLP 中的大多数任务都需要推理,但 LegalAI 的任务在某种程度上有所不同,因为法律推理必须严格遵守法律明确定义的规则。因此,将预定义规则与人工智能技术相结合对于法律推理至关重要。此外,复杂的案件场景和复杂的法律规定可能需要更复杂的推理来分析。
  3. 可解释性:在 LegalAI 中做出的决定通常应该是可解释的,以便应用于真实的法律体系。否则,公平性可能会受到损害。在 LegalAI 中,可解释性与性能一样重要。

本文主要贡献如下:

  1. 从 NLP 研究人员和法律专业人士的角度描述现有工作;举例说明了几种基于嵌入和基于符号的方法,并探索了 LegalAI 的未来发展方向。
  2. 描述了3个 Legal AI 的典型应用场景,包括法律判决预测、类案匹配和法律问答。
  3. 我们对多个数据集进行了详尽的实验,以探索如何利用 NLP 技术和法律知识来克服 LegalAI 中的挑战。可以从 github1 找到实现。
  4. 总结了 LegalAI 数据集,可以将其视为相关任务的基准。这些数据集的详细信息可以从 github2 中找到,其中有几篇值得一读的法律论文。

基于嵌入的方法

字符、单词、概念嵌入

现有作品主要围绕将 Word2Vec 等现有嵌入方法应用于法律领域语料库。

尽管法律领域的知识图谱方法很有前途,但在实际应用之前仍然存在两大挑战。首先,LegalAI 中知识图谱的构建比较复杂。在大多数场景下,没有现成的法律知识图谱可用,因此研究人员需要从头开始构建。此外,不同的法律概念在不同国家的法律制度下具有不同的表示和含义,这也给构建通用法律知识图谱带来了挑战。其次,广义法律知识图谱与NLP中常用的知识图谱在形式上有所不同。现有的知识图谱关注的是实体和概念之间的关系,而LegalAI更侧重于对法律概念的解释。

预训练语言模型(PLMs)

BERT 等预训练语言模型 (PLM) 已成为 NLP 多个领域近期关注的焦点。但现有 PLM 使用的文本与法律文本之间存在差异,这也会导致将 PLM 直接应用于法律任务时的性能不尽如人意。为了解决这个问题,Zhong 等人1提出了一种在中国法律文件(包括民事和刑事案件文件)上进行预训练的语言模型。特定于法律领域的 PLM 为 LegalAI 的任务提供了一个更合格的基线系统。

对于 LegalAI 中 PLM 未来的发展,研究人员可以将更多的目标放在“将知识集成到 PLM 中“。将知识集成到预训练模型中可以帮助法律概念之间的推理能力。

基于符号的方法

基于符号的方法涉及利用法律领域的符号和知识来完成 LegalAI 的任务。符号化的法律知识,例如事件和关系,可以提供可解释性。深度学习方法可以用于基于符号的方法以获得更好的性能。

信息抽取

IE(Information Extraction) 强调从文本中提取有价值的信息,并且有许多 NLP 工作专注于 IE,包括命名实体识别,关系提取和事件提取。

为了更好地利用法律文本的特殊性,学者们尝试使用本体论或全局一致性用于 LegalAI 中的命名实体识别。为了从法律文件中提取关系和事件,学者们尝试应用不同的 NLP 技术,包括手工制定的规则、CRF、SVM、CNN、GRU 等联合模型或无标度标识符网络以获得有希望的结果。

需要注意的是,提取的符号具有法律依据,可以为法律应用提供可解释性,因此我们不能只关注算法的性能。在未来的研究中,我们需要更多地关注将提取的信息应用于 LegalAI 的任务。这些信息的利用取决于具体任务的要求,这些信息可以提供更多的可解释性。

法律要素提取

法律要素的提取侧重于提取关键要素,例如是否有人被杀或东西被盗。这些要素称为犯罪构成要件,我们可以根据这些要素的结果直接对犯罪人定罪。利用这些元素不仅可以为判断预测任务带来中间监督信息,还可以使模型的预测结果更具可解释性。
在这里插入图片描述

为了对基于元素的符号进行更深入的分析,Shu 等人2 提出了一个数据集,用于从三种不同类型的案件中提取要素,包括离婚纠纷、劳资纠纷和贷款纠纷。数据集要求我们检测相关元素是否满足,并将任务形式化为多标签分类问题。

在这里插入图片描述
从 Table2 的结果可以看出,在通用领域预训练的语言模型表现不如特定领域的 PLM,这证明了 PLM 在 LegalAI 中的必要性。从要素提取的结果可以看出,现有方法在要素提取方面可以达到很好的性能,但仍不足以满足相应的应用。这些要素可以被视为预定义的法律知识,并有助于下游任务。如何提高要素提取的性能具有进一步研究的价值。

LegalAI 应用场景

Legal AI 的典型应用有:法律判决预测、类案匹配和法律问答。法律判决预测和类案匹配可以说是大陆法系和英美法系判决的核心功能,而法律问答可以为不熟悉法律领域的人提供咨询。

法律判决预测(Legal Judgment Prediction)

LJP 的任务主要涉及如何从案件的事实描述和民法体系中的成文法条文的内容来预测判决结果。
在这里插入图片描述

早期的工作围绕使用数学或统计方法分析特定情况下的现有法律案件展开。数学方法和法律规则的结合使得预测结果具有可解释性。

为了促进 LJP 的进展,Xiao 等人3提出了一个大规模的中国刑事判决预测数据集 C-LJP。该数据集包含中国政府发布的超过 268 万份法律文件,使 C-LJP 成为 LJP 的合格基准。 C-LJP 包含三个子任务,包括相关条款、适用收费和处罚期限。前两个可以形式化为多标签分类任务,而最后一个是回归任务。

随着神经网络的发展,很多学者开始用深度学习解决LJP问题,这些工作可以分为两个主要方向。第一个是使用更多新颖的模型来提高性能。另一个是探索如何使用法律知识或 LJP 的属性。

在这里插入图片描述
从结果中我们可以了解到,大多数模型在预测高频费用或文章方面都可以达到令人满意的性能。然而,模型在低频标签上表现不佳,因为 micro-F1 和 macro-F1 之间存在差距。

此外,我们可以发现 BERT 的性能并不令人满意,因为与那些参数较少的模型相比,它并没有太大的改进。主要原因是法律文本的长度很长,但是BERT能处理的最大长度是512。据统计,最大文档长度是56、694,15%的文档长度超过512。 LJP 需要文档理解和推理技术。
(是否可以将文本分段,结合知识图谱进行分析??)

虽然基于嵌入的方法可以取得很好的性能,但我们仍然需要考虑在 LJP 中将基于符号的方法与基于嵌入的方法结合起来。

为了获得更好的 LJP 性能,一些挑战需要研究人员在未来努力:

  1. 需要文档理解和推理技术才能从极长的法律文本中获取全局信息。
  2. 小样本学习。即使是低频收费也不应被忽视,因为它们是合法诚信的一部分。因此,处理不常见的标签对于 LJP 至关重要。
  3. 可解释性。如果我们想将方法应用于真实的法律系统,我们必须了解它们如何做出预测。然而,现有的基于嵌入的方法就像一个黑盒子。影响他们预测的因素仍然未知,这可能会给法律体系带来不公平和道德偏见等问题。引入前面提到的合法符号和知识将有利于LJP 的可解释性。

类案匹配(Similar Case Matching)

为了更好地预测英美法系的判决结果,类案匹配(SCM)成为了LegalAI的一个重要课题。SCM 专注于寻找成对的相似案例,相似性的定义可以多种多样。 SCM 需要从事实级别、事件级别和元素级别等不同粒度的信息中对案例之间的关系进行建模。
在这里插入图片描述

有几个 Legal IR 数据集,包括 COLIEE(Kano 等人,2018 年)、CaseLaw(Locke 和 Zuccon,2018 年)和 CM(Xiao 等人,2019 年)。 COLIEE 和 CaseLaw 都涉及从大型语料库中检索最相关的文章,而 CM 中的数据示例给出了三个用于计算相似度的法律文件。这些数据集为 Legal IR 的研究提供了基准。

从结果中,我们观察到现有的能够捕获语义信息的神经模型优于 TF-IDF,但对于 SCM 来说性能仍然不够。正如肖等人。 (2019) 状态,主要原因是法律专业人士认为该数据集中的元素定义了法律案件的相似性。法律专业人士会强调两个案件是否具有相似的要素。仅考虑术语级别和语义级别的相似性对于任务来说是不够的。

对于SCM的进一步研究,有两个方向需要进一步努力:

  1. 基于元素的表示。研究人员可以更多地关注法律文件的符号,因为法律案件的相似性与这些元素相关。
  2. 知识整合。由于 SCM 的语义级匹配不足,我们需要考虑将法律知识纳入模型以提高性能并提供可解释性。

法律问答(Legal Question-Answering)

法律问答(LQA),旨在回答法律领域的问题。
在这里插入图片描述
在LQA中,问题的形式各不相同,有些问题会强调一些法律概念的解释,而另一些可能会涉及具体案例的分析。专业人士和非专业人士之间的问题表达方式也可能大相径庭,尤其是在描述特定领域的术语时。
在这里插入图片描述
在 LegalAI 中,有很多问答的数据集。段等(2019) 提出 CJRC,这是一个与 SQUAD 2.0 (Rajpurkar et al., 2018) 格式相同的法律阅读理解数据集,其中包括跨度提取、是/否问题和无法回答的问题。然而,大多数现有方法都是在小数据集上进行实验,这使得它们不一定适用于海量数据集和真实场景。

从实验结果看,与它们在开放域问答中的有希望的结果相比,模型不能很好地回答法律问题,并且现有模型与 LQA 中的人类之间仍然存在巨大差距。

对于更合格的 LQA 方法,有几个重大困难需要克服:

  1. 合法的多跳推理。正如钟等人。 (2019a) 状态,现有模型可以执行推理但不能执行多跳推理。然而,法律案件非常复杂,单步推理无法解决。
  2. 法律概念的理解。我们可以发现,几乎所有的模型在案例分析方面都比知识理解更好,这证明知识建模对于现有方法仍然具有挑战性。如何将法律知识建模到LQA中至关重要,因为法律知识是LQA的基础。
    (是否可以从大量案件中学到规律,进而作为辅助推理)

总结

法律任务的三大挑战仍有待解决。知识建模、法律推理和可解释性是 LegalAI 能够可靠地服务于法律领域的基础。现有的一些方法正试图解决这些问题,但研究人员还有很长的路要走。

未来,对于这些现有任务,研究人员可以专注于解决 LegalAI 结合基于嵌入和基于符号的方法的三个最紧迫的挑战。对于还没有数据集或者数据集不够大的任务,我们可以尝试构建一个大规模高质量的数据集或者使用few-shot或者zero-shot的方法来解决这些问题。

此外,我们需要认真对待 LegalAI 的伦理问题。将LegalAI的技术直接应用到法律体系中,会带来性别偏见、种族歧视等伦理问题。


  1. Haoxi Zhong, Zhengyan Zhang, Zhiyuan Liu, and Maosong Sun. 2019b. Open chinese language pretrained model zoo. Technical report, Technical Report. Technical Report. ↩︎

  2. Yi Shu, Yao Zhao, Xianghui Zeng, and Qingli Ma. 2019. Cail2019-fe. Technical report, Gridsum. ↩︎

  3. Chaojun Xiao, Haoxi Zhong, Zhipeng Guo, Cunchao Tu, Zhiyuan Liu, Maosong Sun, Yansong Feng, Xianpei Han, Zhen Hu, Heng Wang, et al. 2018. Cail2018: A large-scale legal dataset for judgment prediction. arXiv preprint arXiv:1807.02478. ↩︎

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值