二叉树:前序遍历、中序遍历、后续遍历
前序遍历:根左右。
中序遍历:左根右。
后序遍历:左右根。
//递归中序遍历
void midTrav(BiTree* root) {
if (root) {
midTrav(root->left);
cout << root->key << " ";
midTrav(root->right);
}
}
//递归先序遍历
void preTrav(BiTree* root) {
if (root) {
cout << root->key << " ";
preTrav(root->left);
preTrav(root->right);
}
}
//递归后序遍历
void lastTrav(BiTree* root) {
if (root) {
lastTrav(root->left);
lastTrav(root->right);
cout << root->key << " ";
}
}
反推:

- 前序的第一个是root,后序的最后一个是root。
- 先确定跟节点,然后根据中序遍历,在根左边的为左子树,根右边的为右子树
- 对于每一个子树可以看成一个全新的树,仍然遵循上面的规律。
图:深度优先(DFS)、广度优先(BFS)
深度:前序遍历。沿着一条路一直走到底,然后进行回溯
广度:层级遍历。优先搜索所有相邻的节点,再访问所有相邻节点的邻节点。


图片来源:图的遍历之 深度优先搜索和广度优先搜索
本文深入探讨了二叉树的前序、中序和后序遍历方法,以及图的深度优先和广度优先遍历策略。通过递归算法实现,详细解释了每种遍历方式的特点及应用场景,是理解数据结构与算法不可多得的资料。
1461

被折叠的 条评论
为什么被折叠?



