矩阵的秩
非零子式的最高阶数(反映矩阵行之间的差异性)
齐次线性方程组:方程右边常数项都为0
{
x
1
+
x
2
+
x
3
=
0
x
1
−
x
2
−
x
3
=
0
2
x
1
+
4
x
3
=
0
\begin {cases} x_1 + x_2 + x_3 = 0 \\ x_1 - x_2 - x_3 = 0 \\ 2x_1 + 4x_3 = 0 \end {cases}
⎩⎪⎨⎪⎧x1+x2+x3=0x1−x2−x3=02x1+4x3=0
A
=
(
1
1
1
1
−
1
−
1
2
0
4
)
A = \begin {pmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 2 & 0 & 4 \end {pmatrix}
A=⎝⎛1121−101−14⎠⎞
A
‾
=
(
1
1
1
0
1
−
1
−
1
0
2
0
4
0
)
\overline{A} = \left( \begin {array}{ccc|c} 1 & 1 & 1 & 0 \\ 1 & -1 & -1 & 0 \\ 2 & 0 & 4 & 0 \end {array} \right)
A=⎝⎛1121−101−14000⎠⎞
由矩阵的秩的定义得
r
(
A
)
=
r
(
A
‾
)
=
3
r(A) = r(\overline{A}) = 3
r(A)=r(A)=3
∣
A
∣
=
−
8
=
̸
0
|A| = -8 =\not 0
∣A∣=−8≠0,故只有零解,即
{
x
1
=
0
x
2
=
0
x
3
=
0
\begin {cases} x_1 = 0 \\ x_2 = 0 \\ x_3 = 0 \end {cases}
⎩⎪⎨⎪⎧x1=0x2=0x3=0
例:求向量(1,3,0,5), (1,2,1,4), (1,1,2,3), (2,5,1,9), (1,-3,6,-1)的线性相关性。
解:设
x
1
α
1
+
x
2
α
2
+
x
3
α
3
+
x
4
α
4
+
x
5
α
5
=
0
x_1 \alpha_1 + x_2 \alpha_2 + x_3 \alpha_3 + x_4 \alpha_4 + x_5 \alpha_5 = 0
x1α1+x2α2+x3α3+x4α4+x5α5=0
则有
{
x
1
+
x
2
+
x
3
+
2
x
4
+
x
5
=
0
3
x
1
+
2
x
2
+
x
3
+
5
x
4
−
3
x
5
=
0
x
2
+
2
x
3
+
x
4
+
6
x
5
=
0
5
x
1
+
4
x
2
+
3
x
3
+
9
x
4
−
x
5
=
0
\begin {cases} x_1 + x_2 + x_3 + 2x_4 + x_5 = 0 \\ 3x_1 + 2x_2 + x_3 + 5x_4 - 3x_5 = 0 \\ x_2 + 2x_3 + x_4 + 6x_5 = 0 \\ 5x_1 + 4x_2 + 3x_3 + 9x_4 - x_5 = 0 \end {cases}
⎩⎪⎪⎪⎨⎪⎪⎪⎧x1+x2+x3+2x4+x5=03x1+2x2+x3+5x4−3x5=0x2+2x3+x4+6x5=05x1+4x2+3x3+9x4−x5=0
A
=
(
1
1
1
2
1
3
2
1
5
−
3
0
1
2
1
6
5
4
3
9
−
1
)
A = \begin {pmatrix} 1 & 1 & 1 & 2 & 1 \\ 3 & 2 & 1 & 5 & -3 \\ 0 & 1 & 2 & 1 & 6 \\ 5 & 4 & 3 & 9 & -1 \end {pmatrix}
A=⎝⎜⎜⎛13051214112325191−36−1⎠⎟⎟⎞
初
等
行
变
换
→
\underrightarrow{初等行变换}
初等行变换
=
(
1
0
−
1
1
−
5
0
1
2
1
6
0
0
0
0
0
0
0
0
0
0
)
= \begin {pmatrix} 1 & 0 & -1 & 1 & -5 \\ 0 & 1 & 2 & 1 & 6 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end {pmatrix}
=⎝⎜⎜⎛10000100−12001100−5600⎠⎟⎟⎞
⟶
\longrightarrow
⟶
{
x
1
=
x
3
−
x
4
+
5
x
5
x
2
=
2
x
3
−
x
4
−
6
x
5
\begin {cases} x_1 = x_3 - x_4 + 5x_5 \\ x_2 = 2x_3 - x_4 - 6x_5 \end {cases}
{x1=x3−x4+5x5x2=2x3−x4−6x5
齐次线性方程组的解集的极大线性无关组称为该齐次线性方程组的基础解系,基础解系不是唯一的,因个人计算时对自由未知量的取法而异,但不同的基础解析之间必定对应着某种线性关系。
例如,上式中 x 3 , x 4 , x 5 x_3, x_4, x_5 x3,x4,x5为自由未知量,令 ( x 1 x 2 x 3 ) \begin {pmatrix} x_1 \\ x_2 \\ x_3 \end {pmatrix} ⎝⎛x1x2x3⎠⎞取 ( 1 0 0 ) \begin {pmatrix} 1 \\ 0 \\ 0 \end {pmatrix} ⎝⎛100⎠⎞, ( 0 1 0 ) \begin {pmatrix} 0 \\ 1 \\ 0 \end {pmatrix} ⎝⎛010⎠⎞, ( 0 0 1 ) \begin {pmatrix} 0 \\ 0 \\ 1 \end {pmatrix} ⎝⎛001⎠⎞,得 δ 1 = ( 1 2 1 0 0 ) \delta_1 = \begin {pmatrix} 1 \\ 2 \\ 1 \\ 0 \\ 0 \end {pmatrix} δ1=⎝⎜⎜⎜⎜⎛12100⎠⎟⎟⎟⎟⎞, δ 2 = ( − 1 − 1 0 1 0 ) \delta_2 = \begin {pmatrix} -1 \\ -1 \\ 0 \\ 1 \\ 0 \end {pmatrix} δ2=⎝⎜⎜⎜⎜⎛−1−1010⎠⎟⎟⎟⎟⎞, δ 3 = ( 5 − 6 0 0 1 ) \delta_3 = \begin {pmatrix} 5 \\ -6 \\ 0 \\ 0 \\ 1 \end {pmatrix} δ3=⎝⎜⎜⎜⎜⎛5−6001⎠⎟⎟⎟⎟⎞,任意一组解都可以用 c 1 δ 1 + c 2 δ 2 + c 3 δ 3 c_1 \delta_1 + c_2 \delta_2 + c_3 \delta_3 c1δ1+c2δ2+c3δ3表示, c 1 , c 2 , c 3 c_1, c_2, c_3 c1,c2,c3为任意常数。
由“线性无关的向量组,接长向量组也无关”性质可知,
δ
1
,
δ
2
,
δ
3
\delta_1, \delta_2, \delta_3
δ1,δ2,δ3三个基础解系线性无关
解的个数为
n
−
r
(
A
)
n - r(A)
n−r(A)
注意:不在左边的都是自由未知量
A
=
(
1
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
)
A = \begin {pmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end {pmatrix}
A=⎝⎛100000010000000100⎠⎞
→
{
x
1
=
−
x
6
x
3
=
0
\rightarrow \begin {cases} x_1 = -x_6 \\ x_3 = 0 \end {cases}
→{x1=−x6x3=0
其中
x
2
,
x
4
,
x
5
,
x
6
x_2, x_4, x_5, x_6
x2,x4,x5,x6为自由未知量
令
(
x
2
x
4
x
5
x
6
)
\begin {pmatrix} x_2 \\ x_4 \\ x_5 \\ x_6 \end {pmatrix}
⎝⎜⎜⎛x2x4x5x6⎠⎟⎟⎞取
(
1
0
0
0
)
\begin {pmatrix} 1 \\ 0 \\ 0 \\ 0 \end {pmatrix}
⎝⎜⎜⎛1000⎠⎟⎟⎞,
(
0
1
0
0
)
\begin {pmatrix} 0 \\ 1 \\ 0 \\ 0 \end {pmatrix}
⎝⎜⎜⎛0100⎠⎟⎟⎞,
(
0
0
1
0
)
\begin {pmatrix} 0 \\ 0 \\ 1 \\ 0 \end {pmatrix}
⎝⎜⎜⎛0010⎠⎟⎟⎞,
(
0
0
0
1
)
\begin {pmatrix} 0 \\ 0 \\ 0 \\ 1 \end {pmatrix}
⎝⎜⎜⎛0001⎠⎟⎟⎞得
δ
1
=
(
0
1
0
0
0
0
)
\delta_1 = \begin {pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end {pmatrix}
δ1=⎝⎜⎜⎜⎜⎜⎜⎛010000⎠⎟⎟⎟⎟⎟⎟⎞,
δ
2
=
(
0
0
0
1
0
0
)
\delta_2 = \begin {pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end {pmatrix}
δ2=⎝⎜⎜⎜⎜⎜⎜⎛000100⎠⎟⎟⎟⎟⎟⎟⎞,
δ
3
=
(
0
0
0
0
1
0
)
\delta_3 = \begin {pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end {pmatrix}
δ3=⎝⎜⎜⎜⎜⎜⎜⎛000010⎠⎟⎟⎟⎟⎟⎟⎞,
δ
4
=
(
−
1
0
0
0
0
1
)
\delta_4 = \begin {pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end {pmatrix}
δ4=⎝⎜⎜⎜⎜⎜⎜⎛−100001⎠⎟⎟⎟⎟⎟⎟⎞
非齐次线性方程组
A
x
=
0
Ax = 0
Ax=0是
A
x
=
b
Ax = b
Ax=b的导出组
(1).
α
1
,
α
2
\alpha_1, \alpha_2
α1,α2是
A
x
=
b
Ax = b
Ax=b的解,
α
1
−
α
2
\alpha_1 - \alpha_2
α1−α2是
A
x
=
0
Ax = 0
Ax=0的解
证:
A
(
α
1
−
α
2
)
=
A
α
1
−
A
α
2
=
b
−
b
=
0
A(\alpha_1 - \alpha_2) = A \alpha_1 - A \alpha_2 = b - b = 0
A(α1−α2)=Aα1−Aα2=b−b=0
(2).
α
0
\alpha_0
α0是
A
x
=
b
Ax = b
Ax=b的解,
η
1
\eta_1
η1是
A
x
=
0
Ax = 0
Ax=0的解,则
A
(
α
0
+
η
1
)
=
A
α
0
+
A
η
1
=
b
+
0
=
b
A(\alpha_0 + \eta_1) = A \alpha_0 + A \eta_1 = b + 0 = b
A(α0+η1)=Aα0+Aη1=b+0=b,故
α
0
+
η
1
\alpha_0 + \eta_1
α0+η1是
A
x
=
b
Ax = b
Ax=b的解
非齐次线性方程组解的结构
A
x
=
b
Ax = b
Ax=b的特解加上
A
x
=
0
Ax = 0
Ax=0的通解(基础解系的线性组合)
例
解:
A
‾
=
(
1
5
−
1
−
1
−
1
1
−
2
1
3
3
3
8
−
1
1
1
1
−
9
3
7
7
)
\overline{A} = \left( \begin {array}{cccc|c} 1 & 5 & -1 & -1 & -1 \\ 1 & -2 & 1 & 3 & 3 \\ 3 & 8 & -1 & 1 & 1 \\ 1 & -9 & 3 & 7 & 7 \end {array} \right)
A=⎝⎜⎜⎛11315−28−9−11−13−1317−1317⎠⎟⎟⎞
初
等
行
变
换
→
\underrightarrow{初等行变换}
初等行变换
(
1
0
3
/
7
13
/
7
13
/
7
0
1
−
2
/
7
−
4
/
7
−
4
/
7
0
0
0
0
0
0
0
0
0
0
)
\left( \begin {array}{cccc|c} 1 & 0 & 3/7 & 13/7 & 13/7 \\ 0 & 1 & -2/7 & -4/7 & -4/7 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end {array} \right)
⎝⎜⎜⎛100001003/7−2/70013/7−4/70013/7−4/700⎠⎟⎟⎞
⟶
\longrightarrow
⟶
{
x
1
=
−
3
/
7
x
3
−
13
/
7
x
4
+
13
/
7
x
2
=
2
/
7
x
3
+
4
/
7
x
4
−
4
/
7
\begin {cases} x_1 = -3/7x_3 - 13/7x_4 + 13/7 \\ x_2 = 2/7x_3 + 4/7x_4 - 4/7 \end {cases}
{x1=−3/7x3−13/7x4+13/7x2=2/7x3+4/7x4−4/7
x
3
,
x
4
x_3, x_4
x3,x4为自由未知量,令
(
x
3
x
4
)
\begin {pmatrix} x_3 \\ x_4 \end {pmatrix}
(x3x4)取
(
0
0
)
\begin {pmatrix} 0 \\ 0 \end {pmatrix}
(00)得方程的一个特解
α
0
=
(
13
/
7
−
4
/
7
0
0
)
\alpha_0 = \begin {pmatrix} 13/7 \\ -4/7 \\ 0 \\ 0 \end {pmatrix}
α0=⎝⎜⎜⎛13/7−4/700⎠⎟⎟⎞
导出组的同解方程组为
{
x
1
=
−
3
/
7
x
3
−
13
/
7
x
4
x
2
=
2
/
7
x
3
+
4
/
7
x
4
\begin {cases} x_1 = -3/7x_3 - 13/7x_4 \\ x_2 = 2/7x_3 + 4/7x_4 \end {cases}
{x1=−3/7x3−13/7x4x2=2/7x3+4/7x4 令
(
x
3
x
4
)
\begin {pmatrix} x_3 \\ x_4 \end {pmatrix}
(x3x4)取
(
1
0
)
\begin {pmatrix} 1 \\ 0 \end {pmatrix}
(10),
(
0
1
)
\begin {pmatrix} 0 \\ 1 \end {pmatrix}
(01)得
η
1
=
(
−
3
/
7
2
/
7
1
0
)
\eta_1 = \begin {pmatrix} -3/7 \\ 2/7 \\ 1 \\ 0 \end {pmatrix}
η1=⎝⎜⎜⎛−3/72/710⎠⎟⎟⎞,
η
2
=
(
−
13
/
7
4
/
7
0
1
)
\eta_2 = \begin {pmatrix} -13/7 \\ 4/7 \\ 0 \\ 1 \end {pmatrix}
η2=⎝⎜⎜⎛−13/74/701⎠⎟⎟⎞则方程组解的结构为:
α
0
+
c
1
η
1
+
c
2
η
2
\alpha_0 + c_1 \eta_1 + c_2 \eta_2
α0+c1η1+c2η2,
c
1
,
c
2
c_1, c_2
c1,c2为任意常数。
例4.4.5 有四元非齐次线性方程组,已知
r
(
A
)
=
3
,
α
1
,
α
2
,
α
3
r(A) = 3, \alpha_1, \alpha_2, \alpha_3
r(A)=3,α1,α2,α3是方程组的三个解,
α
1
=
(
2
,
3
,
4
,
5
)
T
,
α
2
+
α
3
=
(
1
,
2
,
3
,
4
)
T
\alpha_1 = (2, 3, 4, 5)^T, \alpha_2 + \alpha_3 = (1, 2, 3, 4)^T
α1=(2,3,4,5)T,α2+α3=(1,2,3,4)T求方程组的解。
解:
A
x
=
0
Ax = 0
Ax=0的解为
2
α
1
−
(
α
2
+
α
3
)
=
(
3
,
4
,
5
,
6
)
T
2 \alpha_1 - (\alpha_2 + \alpha_3) = (3, 4, 5, 6)^T
2α1−(α2+α3)=(3,4,5,6)T,因为
n
−
r
(
A
)
=
4
−
3
=
1
n - r(A) = 4 - 3 = 1
n−r(A)=4−3=1,故
A
x
=
b
Ax = b
Ax=b的解的结构为
α
1
+
c
1
(
3
,
4
,
5
,
6
)
T
\alpha_1 + c_1 (3, 4, 5, 6)^T
α1+c1(3,4,5,6)T,
c
1
c_1
c1为任意常数
矩阵的特征值与特征向量
假设A为n阶方阵,若存在数
λ
\lambda
λ,存在非零向量
α
\alpha
α,使
A
α
=
λ
α
A \alpha = \lambda \alpha
Aα=λα,则称
λ
\lambda
λ为特征值(特征根),
α
\alpha
α为特征向量(互相对应,不单独存在)。
一个特征值可以对应无数个特征向量,一个特征向量只能对应一个特征值。
注:
λ
\lambda
λ可以为0,
α
\alpha
α不能为0
λ
E
α
−
A
α
=
0
\lambda E \alpha - A \alpha = 0
λEα−Aα=0
(
λ
E
−
A
)
x
=
0
(\lambda E - A)x = 0
(λE−A)x=0有非零解
  
⟺
  
∣
λ
E
−
A
∣
=
0
\iff |\lambda E - A| = 0
⟺∣λE−A∣=0
(1)
λ
\lambda
λ是A的特征值,
α
\alpha
α是
λ
\lambda
λ对应的特征向量,则
c
α
c \alpha
cα也是
λ
\lambda
λ的特征向量
(
c
=
̸
0
)
(c =\not 0)
(c≠0)
c
A
α
=
c
λ
α
→
A
(
c
α
)
=
λ
(
c
α
)
cA \alpha = c \lambda \alpha \rightarrow A (c \alpha) = \lambda (c \alpha)
cAα=cλα→A(cα)=λ(cα)
(2) 一个特征向量
α
\alpha
α只对应一个特征值
λ
\lambda
λ
设
λ
1
,
λ
2
\lambda_1, \lambda_2
λ1,λ2均为
α
\alpha
α的特征值,则有
A
α
=
λ
1
α
=
λ
2
α
⟶
(
λ
1
−
λ
2
)
α
=
0
A\alpha = \lambda_1 \alpha = \lambda_2 \alpha \longrightarrow (\lambda_1 - \lambda_2)\alpha = 0
Aα=λ1α=λ2α⟶(λ1−λ2)α=0
因为
α
=
̸
0
\alpha =\not 0
α≠0,故
λ
1
=
λ
2
\lambda_1 = \lambda_2
λ1=λ2
(3)
α
1
,
α
2
\alpha_1, \alpha_2
α1,α2是
λ
\lambda
λ的特征向量,则
c
1
α
1
+
c
2
α
2
c_1 \alpha_1+c_2 \alpha _2
c1α1+c2α2也是
λ
\lambda
λ的特征向量
A
(
c
1
α
1
+
c
2
α
2
)
=
c
1
A
α
1
+
c
2
A
α
2
A(c_1 \alpha_1+c_2 \alpha _2 ) = c_1 A\alpha_1+c_2 A\alpha _2
A(c1α1+c2α2)=c1Aα1+c2Aα2
=
c
1
λ
α
1
+
c
2
λ
α
2
=
λ
(
c
1
α
1
+
c
2
α
2
)
= c_1 \lambda \alpha_1+c_2 \lambda \alpha _2 = \lambda(c_1 \alpha_1+c_2 \alpha _2)
=c1λα1+c2λα2=λ(c1α1+c2α2)
A
α
=
λ
α
A \alpha = \lambda \alpha
Aα=λα
∣
λ
E
−
A
∣
=
0
|\lambda E - A| = 0
∣λE−A∣=0
A
=
(
−
1
1
0
−
4
3
0
1
0
5
)
A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 5 \end{pmatrix}
A=⎝⎛−1−41130005⎠⎞
λ
E
−
A
=
(
λ
0
0
0
λ
0
0
0
λ
)
\lambda E - A = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}
λE−A=⎝⎛λ000λ000λ⎠⎞
−
(
−
1
1
0
−
4
3
0
1
0
2
)
- \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}
−⎝⎛−1−41130002⎠⎞
=
(
λ
+
1
−
1
0
4
λ
−
3
0
−
1
0
λ
−
2
)
= \begin{pmatrix} \lambda + 1 & -1 & 0 \\ 4 & \lambda - 3 & 0 \\ -1 & 0 & \lambda -2 \end{pmatrix}
=⎝⎛λ+14−1−1λ−3000λ−2⎠⎞
∣
λ
E
−
A
∣
=
∣
λ
+
1
−
1
0
4
λ
−
3
0
−
1
0
λ
−
2
∣
=
0
|\lambda E - A| = \begin{vmatrix} \lambda +1 & -1 & 0 \\ 4 & \lambda -3 & 0 \\ -1 & 0 & \lambda -2 \end{vmatrix} = 0
∣λE−A∣=∣∣∣∣∣∣λ+14−1−1λ−3000λ−2∣∣∣∣∣∣=0
⟶
\longrightarrow
⟶
{
λ
1
=
1
λ
2
=
1
λ
3
=
2
\begin{cases} \lambda_1 =1\\ \lambda_2 =1\\ \lambda_3 = 2 \end{cases}
⎩⎪⎨⎪⎧λ1=1λ2=1λ3=2
(1). 将
λ
=
1
\lambda = 1
λ=1代入
λ
E
−
A
\lambda E-A
λE−A并化为行简化阶梯形
(
2
−
1
0
4
−
2
0
−
1
0
−
1
)
\begin{pmatrix} 2 & -1 & 0 \\ 4 & -2 & 0 \\ -1 & 0 & -1 \end{pmatrix}
⎝⎛24−1−1−2000−1⎠⎞
⟶
\longrightarrow
⟶
(
1
−
1
2
0
0
1
2
0
0
0
)
\begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}
⎝⎛100−2110020⎠⎞
⟶
\longrightarrow
⟶
{
x
1
=
1
2
x
2
x
2
=
−
2
x
3
\begin {cases} x_1 = \frac{1}{2} x_2 \\ x_2 = -2 x_3 \end {cases}
{x1=21x2x2=−2x3
x
3
x_3
x3为自由未知量,令
x
3
=
1
x_3 = 1
x3=1,则
δ
1
=
c
1
(
−
1
−
2
1
)
\delta_1 = c_1 \begin {pmatrix} -1 \\ -2 \\ 1 \end {pmatrix}
δ1=c1⎝⎛−1−21⎠⎞
c
1
c_1
c1为任意非零常数
(2). 将
λ
=
2
\lambda = 2
λ=2代入
λ
E
−
A
\lambda E-A
λE−A并化为行简化阶梯形
(
3
−
1
0
4
−
1
0
−
1
0
0
)
\begin{pmatrix} 3 & -1 & 0 \\ 4 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}
⎝⎛34−1−1−10000⎠⎞
⟶
\longrightarrow
⟶
(
1
0
0
0
1
0
0
0
0
)
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}
⎝⎛100010000⎠⎞
⟶
\longrightarrow
⟶
{
x
1
=
0
x
2
=
0
\begin {cases} x_1 = 0 \\ x_2 = 0 \end {cases}
{x1=0x2=0
x
3
x_3
x3为自由未知量,令
x
3
=
1
x_3 = 1
x3=1,则
δ
2
=
c
2
(
0
0
1
)
\delta_2 = c_2 \begin {pmatrix} 0 \\ 0 \\ 1 \end {pmatrix}
δ2=c2⎝⎛001⎠⎞
c
2
c_2
c2为任意非零常数
例2
A
=
(
1
−
2
2
−
2
−
2
4
2
4
−
2
)
A = \begin {pmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end {pmatrix}
A=⎝⎛1−22−2−2424−2⎠⎞
∣
λ
E
−
A
∣
=
∣
λ
−
1
2
−
2
2
λ
+
2
−
4
−
2
−
4
λ
+
2
∣
=
0
|\lambda E- A| = \begin{vmatrix} \lambda - 1 & 2 & -2 \\ 2 & \lambda + 2 & -4 \\ -2 & -4 & \lambda + 2 \end{vmatrix} = 0
∣λE−A∣=∣∣∣∣∣∣λ−12−22λ+2−4−2−4λ+2∣∣∣∣∣∣=0
⟶
\longrightarrow
⟶
∣
λ
−
1
4
−
2
2
λ
+
6
−
4
0
0
λ
−
2
∣
=
0
\begin{vmatrix} \lambda-1 & 4 & -2 \\ 2 & \lambda+6 & -4 \\ 0 & 0 & \lambda-2 \end{vmatrix} = 0
∣∣∣∣∣∣λ−1204λ+60−2−4λ−2∣∣∣∣∣∣=0
⟶
{
λ
1
=
−
7
λ
2
=
2
λ
3
=
2
\longrightarrow \begin{cases} \lambda_1 = -7 \\ \lambda_2 = 2 \\ \lambda_3 = 2 \end{cases}
⟶⎩⎪⎨⎪⎧λ1=−7λ2=2λ3=2
将特征值逐个代入矩阵
(
λ
E
−
A
)
(\lambda E - A)
(λE−A)并化为行简化阶梯形
当
λ
1
=
−
7
\lambda_1 = -7
λ1=−7 则
A
=
(
−
8
2
−
2
2
−
5
−
4
−
2
−
4
−
5
)
A = \begin {pmatrix} -8 & 2 & -2 \\ 2 & -5 & -4 \\ -2 & -4 & -5 \end {pmatrix}
A=⎝⎛−82−22−5−4−2−4−5⎠⎞
初
等
行
变
换
→
(
1
−
5
2
−
2
0
1
1
0
0
0
)
\underrightarrow{初等行变换} \begin {pmatrix} 1 & -\frac{5}{2} & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end {pmatrix}
初等行变换⎝⎛100−2510−210⎠⎞
⟶
{
x
1
=
5
2
x
2
+
2
x
3
x
2
=
−
x
3
\longrightarrow \begin {cases} x_1 = \frac{5}{2}x_2 + 2 x_3 \\ x_2 = - x_3 \end {cases}
⟶{x1=25x2+2x3x2=−x3
x
3
x_3
x3为自由未知量,令
x
3
=
1
x_3 = 1
x3=1 则
α
1
=
c
1
(
1
2
−
1
1
)
\alpha_1 = c_1 \begin {pmatrix} \frac{1}{2} \\ -1 \\ 1 \end {pmatrix}
α1=c1⎝⎛21−11⎠⎞
c
1
c_1
c1为任意非零常数
当
λ
=
2
A
=
(
1
2
−
2
2
4
−
4
−
2
−
4
4
)
\lambda = 2 ~~ A = \begin {pmatrix} 1 & 2 & -2 \\ 2 & 4 & -4 \\ -2 & -4 & 4 \end {pmatrix}
λ=2 A=⎝⎛12−224−4−2−44⎠⎞
初
等
行
变
换
→
(
1
2
−
2
0
0
0
0
0
0
)
\underrightarrow{初等行变换} \begin {pmatrix} 1 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end {pmatrix}
初等行变换⎝⎛100200−200⎠⎞
⟶
x
1
=
−
2
x
2
+
2
x
3
\longrightarrow x_1 = -2x_2 + 2x_3
⟶x1=−2x2+2x3
x
2
,
x
3
x_2,x_3
x2,x3为自由未知量,令
(
x
2
x
3
)
\begin {pmatrix} x_2 \\ x_3 \end {pmatrix}
(x2x3)取
(
1
0
)
\begin {pmatrix} 1 \\ 0 \end {pmatrix}
(10),
(
0
1
)
\begin {pmatrix} 0 \\ 1 \end {pmatrix}
(01)则
α
2
=
c
2
(
−
2
1
0
)
\alpha_2 = c_2 \begin {pmatrix} -2 \\ 1 \\ 0 \end {pmatrix}
α2=c2⎝⎛−210⎠⎞
+
c
3
(
2
0
1
)
+c_3 \begin {pmatrix} 2 \\ 0 \\ 1 \end {pmatrix}
+c3⎝⎛201⎠⎞
c
2
,
c
3
c_2,c_3
c2,c3不同时为零