20190804《线性代数》 arrange youdao &简书

矩阵的秩

非零子式的最高阶数(反映矩阵行之间的差异性)
齐次线性方程组:方程右边常数项都为0
{ x 1 + x 2 + x 3 = 0 x 1 − x 2 − x 3 = 0 2 x 1 + 4 x 3 = 0 \begin {cases} x_1 + x_2 + x_3 = 0 \\ x_1 - x_2 - x_3 = 0 \\ 2x_1 + 4x_3 = 0 \end {cases} x1+x2+x3=0x1x2x3=02x1+4x3=0
A = ( 1 1 1 1 − 1 − 1 2 0 4 ) A = \begin {pmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 2 & 0 & 4 \end {pmatrix} A=112110114 A ‾ = ( 1 1 1 0 1 − 1 − 1 0 2 0 4 0 ) \overline{A} = \left( \begin {array}{ccc|c} 1 & 1 & 1 & 0 \\ 1 & -1 & -1 & 0 \\ 2 & 0 & 4 & 0 \end {array} \right) A=112110114000
由矩阵的秩的定义得 r ( A ) = r ( A ‾ ) = 3 r(A) = r(\overline{A}) = 3 r(A)=r(A)=3
∣ A ∣ = − 8 = ̸ 0 |A| = -8 =\not 0 A=8≠0,故只有零解,即 { x 1 = 0 x 2 = 0 x 3 = 0 \begin {cases} x_1 = 0 \\ x_2 = 0 \\ x_3 = 0 \end {cases} x1=0x2=0x3=0

例:求向量(1,3,0,5), (1,2,1,4), (1,1,2,3), (2,5,1,9), (1,-3,6,-1)的线性相关性。
解:设 x 1 α 1 + x 2 α 2 + x 3 α 3 + x 4 α 4 + x 5 α 5 = 0 x_1 \alpha_1 + x_2 \alpha_2 + x_3 \alpha_3 + x_4 \alpha_4 + x_5 \alpha_5 = 0 x1α1+x2α2+x3α3+x4α4+x5α5=0
则有 { x 1 + x 2 + x 3 + 2 x 4 + x 5 = 0 3 x 1 + 2 x 2 + x 3 + 5 x 4 − 3 x 5 = 0 x 2 + 2 x 3 + x 4 + 6 x 5 = 0 5 x 1 + 4 x 2 + 3 x 3 + 9 x 4 − x 5 = 0 \begin {cases} x_1 + x_2 + x_3 + 2x_4 + x_5 = 0 \\ 3x_1 + 2x_2 + x_3 + 5x_4 - 3x_5 = 0 \\ x_2 + 2x_3 + x_4 + 6x_5 = 0 \\ 5x_1 + 4x_2 + 3x_3 + 9x_4 - x_5 = 0 \end {cases} x1+x2+x3+2x4+x5=03x1+2x2+x3+5x43x5=0x2+2x3+x4+6x5=05x1+4x2+3x3+9x4x5=0 A = ( 1 1 1 2 1 3 2 1 5 − 3 0 1 2 1 6 5 4 3 9 − 1 ) A = \begin {pmatrix} 1 & 1 & 1 & 2 & 1 \\ 3 & 2 & 1 & 5 & -3 \\ 0 & 1 & 2 & 1 & 6 \\ 5 & 4 & 3 & 9 & -1 \end {pmatrix} A=13051214112325191361 初 等 行 变 换 → \underrightarrow{初等行变换} = ( 1 0 − 1 1 − 5 0 1 2 1 6 0 0 0 0 0 0 0 0 0 0 ) = \begin {pmatrix} 1 & 0 & -1 & 1 & -5 \\ 0 & 1 & 2 & 1 & 6 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end {pmatrix} =10000100120011005600 ⟶ \longrightarrow { x 1 = x 3 − x 4 + 5 x 5 x 2 = 2 x 3 − x 4 − 6 x 5 \begin {cases} x_1 = x_3 - x_4 + 5x_5 \\ x_2 = 2x_3 - x_4 - 6x_5 \end {cases} {x1=x3x4+5x5x2=2x3x46x5

齐次线性方程组的解集的极大线性无关组称为该齐次线性方程组的基础解系,基础解系不是唯一的,因个人计算时对自由未知量的取法而异,但不同的基础解析之间必定对应着某种线性关系。

例如,上式中 x 3 , x 4 , x 5 x_3, x_4, x_5 x3,x4,x5为自由未知量,令 ( x 1 x 2 x 3 ) \begin {pmatrix} x_1 \\ x_2 \\ x_3 \end {pmatrix} x1x2x3 ( 1 0 0 ) \begin {pmatrix} 1 \\ 0 \\ 0 \end {pmatrix} 100 ( 0 1 0 ) \begin {pmatrix} 0 \\ 1 \\ 0 \end {pmatrix} 010 ( 0 0 1 ) \begin {pmatrix} 0 \\ 0 \\ 1 \end {pmatrix} 001,得 δ 1 = ( 1 2 1 0 0 ) \delta_1 = \begin {pmatrix} 1 \\ 2 \\ 1 \\ 0 \\ 0 \end {pmatrix} δ1=12100 δ 2 = ( − 1 − 1 0 1 0 ) \delta_2 = \begin {pmatrix} -1 \\ -1 \\ 0 \\ 1 \\ 0 \end {pmatrix} δ2=11010 δ 3 = ( 5 − 6 0 0 1 ) \delta_3 = \begin {pmatrix} 5 \\ -6 \\ 0 \\ 0 \\ 1 \end {pmatrix} δ3=56001,任意一组解都可以用 c 1 δ 1 + c 2 δ 2 + c 3 δ 3 c_1 \delta_1 + c_2 \delta_2 + c_3 \delta_3 c1δ1+c2δ2+c3δ3表示, c 1 , c 2 , c 3 c_1, c_2, c_3 c1,c2,c3为任意常数。

由“线性无关的向量组,接长向量组也无关”性质可知, δ 1 , δ 2 , δ 3 \delta_1, \delta_2, \delta_3 δ1,δ2,δ3三个基础解系线性无关
解的个数为 n − r ( A ) n - r(A) nr(A)

注意:不在左边的都是自由未知量

A = ( 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 ) A = \begin {pmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end {pmatrix} A=100000010000000100 → { x 1 = − x 6 x 3 = 0 \rightarrow \begin {cases} x_1 = -x_6 \\ x_3 = 0 \end {cases} {x1=x6x3=0
其中 x 2 , x 4 , x 5 , x 6 x_2, x_4, x_5, x_6 x2,x4,x5,x6为自由未知量
( x 2 x 4 x 5 x 6 ) \begin {pmatrix} x_2 \\ x_4 \\ x_5 \\ x_6 \end {pmatrix} x2x4x5x6 ( 1 0 0 0 ) \begin {pmatrix} 1 \\ 0 \\ 0 \\ 0 \end {pmatrix} 1000 ( 0 1 0 0 ) \begin {pmatrix} 0 \\ 1 \\ 0 \\ 0 \end {pmatrix} 0100 ( 0 0 1 0 ) \begin {pmatrix} 0 \\ 0 \\ 1 \\ 0 \end {pmatrix} 0010 ( 0 0 0 1 ) \begin {pmatrix} 0 \\ 0 \\ 0 \\ 1 \end {pmatrix} 0001 δ 1 = ( 0 1 0 0 0 0 ) \delta_1 = \begin {pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end {pmatrix} δ1=010000 δ 2 = ( 0 0 0 1 0 0 ) \delta_2 = \begin {pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end {pmatrix} δ2=000100 δ 3 = ( 0 0 0 0 1 0 ) \delta_3 = \begin {pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end {pmatrix} δ3=000010 δ 4 = ( − 1 0 0 0 0 1 ) \delta_4 = \begin {pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end {pmatrix} δ4=100001

非齐次线性方程组

A x = 0 Ax = 0 Ax=0 A x = b Ax = b Ax=b的导出组
(1). α 1 , α 2 \alpha_1, \alpha_2 α1,α2 A x = b Ax = b Ax=b的解, α 1 − α 2 \alpha_1 - \alpha_2 α1α2 A x = 0 Ax = 0 Ax=0的解
证: A ( α 1 − α 2 ) = A α 1 − A α 2 = b − b = 0 A(\alpha_1 - \alpha_2) = A \alpha_1 - A \alpha_2 = b - b = 0 A(α1α2)=Aα1Aα2=bb=0
(2). α 0 \alpha_0 α0 A x = b Ax = b Ax=b的解, η 1 \eta_1 η1 A x = 0 Ax = 0 Ax=0的解,则 A ( α 0 + η 1 ) = A α 0 + A η 1 = b + 0 = b A(\alpha_0 + \eta_1) = A \alpha_0 + A \eta_1 = b + 0 = b A(α0+η1)=Aα0+Aη1=b+0=b,故 α 0 + η 1 \alpha_0 + \eta_1 α0+η1 A x = b Ax = b Ax=b的解

非齐次线性方程组解的结构
A x = b Ax = b Ax=b的特解加上 A x = 0 Ax = 0 Ax=0的通解(基础解系的线性组合)


解: A ‾ = ( 1 5 − 1 − 1 − 1 1 − 2 1 3 3 3 8 − 1 1 1 1 − 9 3 7 7 ) \overline{A} = \left( \begin {array}{cccc|c} 1 & 5 & -1 & -1 & -1 \\ 1 & -2 & 1 & 3 & 3 \\ 3 & 8 & -1 & 1 & 1 \\ 1 & -9 & 3 & 7 & 7 \end {array} \right) A=11315289111313171317 初 等 行 变 换 → \underrightarrow{初等行变换} ( 1 0 3 / 7 13 / 7 13 / 7 0 1 − 2 / 7 − 4 / 7 − 4 / 7 0 0 0 0 0 0 0 0 0 0 ) \left( \begin {array}{cccc|c} 1 & 0 & 3/7 & 13/7 & 13/7 \\ 0 & 1 & -2/7 & -4/7 & -4/7 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end {array} \right) 100001003/72/70013/74/70013/74/700
⟶ \longrightarrow { x 1 = − 3 / 7 x 3 − 13 / 7 x 4 + 13 / 7 x 2 = 2 / 7 x 3 + 4 / 7 x 4 − 4 / 7 \begin {cases} x_1 = -3/7x_3 - 13/7x_4 + 13/7 \\ x_2 = 2/7x_3 + 4/7x_4 - 4/7 \end {cases} {x1=3/7x313/7x4+13/7x2=2/7x3+4/7x44/7
x 3 , x 4 x_3, x_4 x3,x4为自由未知量,令 ( x 3 x 4 ) \begin {pmatrix} x_3 \\ x_4 \end {pmatrix} (x3x4) ( 0 0 ) \begin {pmatrix} 0 \\ 0 \end {pmatrix} (00)得方程的一个特解 α 0 = ( 13 / 7 − 4 / 7 0 0 ) \alpha_0 = \begin {pmatrix} 13/7 \\ -4/7 \\ 0 \\ 0 \end {pmatrix} α0=13/74/700
导出组的同解方程组为 { x 1 = − 3 / 7 x 3 − 13 / 7 x 4 x 2 = 2 / 7 x 3 + 4 / 7 x 4 \begin {cases} x_1 = -3/7x_3 - 13/7x_4 \\ x_2 = 2/7x_3 + 4/7x_4 \end {cases} {x1=3/7x313/7x4x2=2/7x3+4/7x4 ( x 3 x 4 ) \begin {pmatrix} x_3 \\ x_4 \end {pmatrix} (x3x4) ( 1 0 ) \begin {pmatrix} 1 \\ 0 \end {pmatrix} (10) ( 0 1 ) \begin {pmatrix} 0 \\ 1 \end {pmatrix} (01) η 1 = ( − 3 / 7 2 / 7 1 0 ) \eta_1 = \begin {pmatrix} -3/7 \\ 2/7 \\ 1 \\ 0 \end {pmatrix} η1=3/72/710 η 2 = ( − 13 / 7 4 / 7 0 1 ) \eta_2 = \begin {pmatrix} -13/7 \\ 4/7 \\ 0 \\ 1 \end {pmatrix} η2=13/74/701则方程组解的结构为: α 0 + c 1 η 1 + c 2 η 2 \alpha_0 + c_1 \eta_1 + c_2 \eta_2 α0+c1η1+c2η2 c 1 , c 2 c_1, c_2 c1,c2为任意常数。

例4.4.5 有四元非齐次线性方程组,已知 r ( A ) = 3 , α 1 , α 2 , α 3 r(A) = 3, \alpha_1, \alpha_2, \alpha_3 r(A)=3,α1,α2,α3是方程组的三个解, α 1 = ( 2 , 3 , 4 , 5 ) T , α 2 + α 3 = ( 1 , 2 , 3 , 4 ) T \alpha_1 = (2, 3, 4, 5)^T, \alpha_2 + \alpha_3 = (1, 2, 3, 4)^T α1=(2,3,4,5)T,α2+α3=(1,2,3,4)T求方程组的解。
解: A x = 0 Ax = 0 Ax=0的解为 2 α 1 − ( α 2 + α 3 ) = ( 3 , 4 , 5 , 6 ) T 2 \alpha_1 - (\alpha_2 + \alpha_3) = (3, 4, 5, 6)^T 2α1(α2+α3)=(3,4,5,6)T,因为 n − r ( A ) = 4 − 3 = 1 n - r(A) = 4 - 3 = 1 nr(A)=43=1,故 A x = b Ax = b Ax=b的解的结构为 α 1 + c 1 ( 3 , 4 , 5 , 6 ) T \alpha_1 + c_1 (3, 4, 5, 6)^T α1+c1(3,4,5,6)T c 1 c_1 c1为任意常数

矩阵的特征值与特征向量

假设A为n阶方阵,若存在数 λ \lambda λ,存在非零向量 α \alpha α,使 A α = λ α A \alpha = \lambda \alpha Aα=λα,则称 λ \lambda λ为特征值(特征根), α \alpha α为特征向量(互相对应,不单独存在)。
一个特征值可以对应无数个特征向量,一个特征向量只能对应一个特征值
注: λ \lambda λ可以为0, α \alpha α不能为0
λ E α − A α = 0 \lambda E \alpha - A \alpha = 0 λEαAα=0
( λ E − A ) x = 0 (\lambda E - A)x = 0 (λEA)x=0有非零解    ⟺    ∣ λ E − A ∣ = 0 \iff |\lambda E - A| = 0 λEA=0
(1) λ \lambda λ是A的特征值, α \alpha α λ \lambda λ对应的特征向量,则 c α c \alpha cα也是 λ \lambda λ的特征向量 ( c = ̸ 0 ) (c =\not 0) (c≠0)
c A α = c λ α → A ( c α ) = λ ( c α ) cA \alpha = c \lambda \alpha \rightarrow A (c \alpha) = \lambda (c \alpha) cAα=cλαA(cα)=λ(cα)
(2) 一个特征向量 α \alpha α只对应一个特征值 λ \lambda λ
λ 1 , λ 2 \lambda_1, \lambda_2 λ1,λ2均为 α \alpha α的特征值,则有
A α = λ 1 α = λ 2 α ⟶ ( λ 1 − λ 2 ) α = 0 A\alpha = \lambda_1 \alpha = \lambda_2 \alpha \longrightarrow (\lambda_1 - \lambda_2)\alpha = 0 Aα=λ1α=λ2α(λ1λ2)α=0
因为 α = ̸ 0 \alpha =\not 0 α≠0,故 λ 1 = λ 2 \lambda_1 = \lambda_2 λ1=λ2
(3) α 1 , α 2 \alpha_1, \alpha_2 α1,α2 λ \lambda λ的特征向量,则 c 1 α 1 + c 2 α 2 c_1 \alpha_1+c_2 \alpha _2 c1α1+c2α2也是 λ \lambda λ的特征向量
A ( c 1 α 1 + c 2 α 2 ) = c 1 A α 1 + c 2 A α 2 A(c_1 \alpha_1+c_2 \alpha _2 ) = c_1 A\alpha_1+c_2 A\alpha _2 A(c1α1+c2α2)=c1Aα1+c2Aα2 = c 1 λ α 1 + c 2 λ α 2 = λ ( c 1 α 1 + c 2 α 2 ) = c_1 \lambda \alpha_1+c_2 \lambda \alpha _2 = \lambda(c_1 \alpha_1+c_2 \alpha _2) =c1λα1+c2λα2=λ(c1α1+c2α2)
A α = λ α A \alpha = \lambda \alpha Aα=λα
∣ λ E − A ∣ = 0 |\lambda E - A| = 0 λEA=0
A = ( − 1 1 0 − 4 3 0 1 0 5 ) A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 5 \end{pmatrix} A=141130005
λ E − A = ( λ 0 0 0 λ 0 0 0 λ ) \lambda E - A = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} λEA=λ000λ000λ − ( − 1 1 0 − 4 3 0 1 0 2 ) - \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix} 141130002 = ( λ + 1 − 1 0 4 λ − 3 0 − 1 0 λ − 2 ) = \begin{pmatrix} \lambda + 1 & -1 & 0 \\ 4 & \lambda - 3 & 0 \\ -1 & 0 & \lambda -2 \end{pmatrix} =λ+1411λ3000λ2
∣ λ E − A ∣ = ∣ λ + 1 − 1 0 4 λ − 3 0 − 1 0 λ − 2 ∣ = 0 |\lambda E - A| = \begin{vmatrix} \lambda +1 & -1 & 0 \\ 4 & \lambda -3 & 0 \\ -1 & 0 & \lambda -2 \end{vmatrix} = 0 λEA=λ+1411λ3000λ2=0 ⟶ \longrightarrow { λ 1 = 1 λ 2 = 1 λ 3 = 2 \begin{cases} \lambda_1 =1\\ \lambda_2 =1\\ \lambda_3 = 2 \end{cases} λ1=1λ2=1λ3=2
(1). 将 λ = 1 \lambda = 1 λ=1代入 λ E − A \lambda E-A λEA并化为行简化阶梯形
( 2 − 1 0 4 − 2 0 − 1 0 − 1 ) \begin{pmatrix} 2 & -1 & 0 \\ 4 & -2 & 0 \\ -1 & 0 & -1 \end{pmatrix} 241120001 ⟶ \longrightarrow ( 1 − 1 2 0 0 1 2 0 0 0 ) \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} 1002110020 ⟶ \longrightarrow { x 1 = 1 2 x 2 x 2 = − 2 x 3 \begin {cases} x_1 = \frac{1}{2} x_2 \\ x_2 = -2 x_3 \end {cases} {x1=21x2x2=2x3 x 3 x_3 x3为自由未知量,令 x 3 = 1 x_3 = 1 x3=1,则 δ 1 = c 1 ( − 1 − 2 1 ) \delta_1 = c_1 \begin {pmatrix} -1 \\ -2 \\ 1 \end {pmatrix} δ1=c1121 c 1 c_1 c1为任意非零常数
(2). 将 λ = 2 \lambda = 2 λ=2代入 λ E − A \lambda E-A λEA并化为行简化阶梯形
( 3 − 1 0 4 − 1 0 − 1 0 0 ) \begin{pmatrix} 3 & -1 & 0 \\ 4 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} 341110000 ⟶ \longrightarrow ( 1 0 0 0 1 0 0 0 0 ) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} 100010000 ⟶ \longrightarrow { x 1 = 0 x 2 = 0 \begin {cases} x_1 = 0 \\ x_2 = 0 \end {cases} {x1=0x2=0 x 3 x_3 x3为自由未知量,令 x 3 = 1 x_3 = 1 x3=1,则 δ 2 = c 2 ( 0 0 1 ) \delta_2 = c_2 \begin {pmatrix} 0 \\ 0 \\ 1 \end {pmatrix} δ2=c2001 c 2 c_2 c2为任意非零常数

例2
A = ( 1 − 2 2 − 2 − 2 4 2 4 − 2 ) A = \begin {pmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end {pmatrix} A=122224242
∣ λ E − A ∣ = ∣ λ − 1 2 − 2 2 λ + 2 − 4 − 2 − 4 λ + 2 ∣ = 0 |\lambda E- A| = \begin{vmatrix} \lambda - 1 & 2 & -2 \\ 2 & \lambda + 2 & -4 \\ -2 & -4 & \lambda + 2 \end{vmatrix} = 0 λEA=λ1222λ+2424λ+2=0 ⟶ \longrightarrow ∣ λ − 1 4 − 2 2 λ + 6 − 4 0 0 λ − 2 ∣ = 0 \begin{vmatrix} \lambda-1 & 4 & -2 \\ 2 & \lambda+6 & -4 \\ 0 & 0 & \lambda-2 \end{vmatrix} = 0 λ1204λ+6024λ2=0 ⟶ { λ 1 = − 7 λ 2 = 2 λ 3 = 2 \longrightarrow \begin{cases} \lambda_1 = -7 \\ \lambda_2 = 2 \\ \lambda_3 = 2 \end{cases} λ1=7λ2=2λ3=2
将特征值逐个代入矩阵 ( λ E − A ) (\lambda E - A) (λEA)并化为行简化阶梯形
λ 1 = − 7 \lambda_1 = -7 λ1=7   则 A = ( − 8 2 − 2 2 − 5 − 4 − 2 − 4 − 5 ) A = \begin {pmatrix} -8 & 2 & -2 \\ 2 & -5 & -4 \\ -2 & -4 & -5 \end {pmatrix} A=822254245 初 等 行 变 换 → ( 1 − 5 2 − 2 0 1 1 0 0 0 ) \underrightarrow{初等行变换} \begin {pmatrix} 1 & -\frac{5}{2} & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end {pmatrix} 1002510210 ⟶ { x 1 = 5 2 x 2 + 2 x 3 x 2 = − x 3 \longrightarrow \begin {cases} x_1 = \frac{5}{2}x_2 + 2 x_3 \\ x_2 = - x_3 \end {cases} {x1=25x2+2x3x2=x3 x 3 x_3 x3为自由未知量,令 x 3 = 1 x_3 = 1 x3=1   则 α 1 = c 1 ( 1 2 − 1 1 ) \alpha_1 = c_1 \begin {pmatrix} \frac{1}{2} \\ -1 \\ 1 \end {pmatrix} α1=c12111 c 1 c_1 c1为任意非零常数
λ = 2    A = ( 1 2 − 2 2 4 − 4 − 2 − 4 4 ) \lambda = 2 ~~ A = \begin {pmatrix} 1 & 2 & -2 \\ 2 & 4 & -4 \\ -2 & -4 & 4 \end {pmatrix} λ=2  A=122244244 初 等 行 变 换 → ( 1 2 − 2 0 0 0 0 0 0 ) \underrightarrow{初等行变换} \begin {pmatrix} 1 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end {pmatrix} 100200200 ⟶ x 1 = − 2 x 2 + 2 x 3 \longrightarrow x_1 = -2x_2 + 2x_3 x1=2x2+2x3 x 2 , x 3 x_2,x_3 x2x3为自由未知量,令
( x 2 x 3 ) \begin {pmatrix} x_2 \\ x_3 \end {pmatrix} (x2x3) ( 1 0 ) \begin {pmatrix} 1 \\ 0 \end {pmatrix} (10) ( 0 1 ) \begin {pmatrix} 0 \\ 1 \end {pmatrix} (01) α 2 = c 2 ( − 2 1 0 ) \alpha_2 = c_2 \begin {pmatrix} -2 \\ 1 \\ 0 \end {pmatrix} α2=c2210 + c 3 ( 2 0 1 ) +c_3 \begin {pmatrix} 2 \\ 0 \\ 1 \end {pmatrix} +c3201
c 2 , c 3 c_2,c_3 c2c3不同时为零

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值