20190802《线性代数》arrange youdao

向量 vector

1). 由n个数 a 1 , a 2 , ⋯   , a n a_1, a_2, \cdots, a_n a1,a2,,an组成的有序数组 ( a 1 , a 2 , ⋯   , a n ) (a_1, a_2, \cdots, a_n) (a1,a2,,an),向量元素成为分量,写成行为行向量,写成列为列向量

向量的线性关系

1). 零向量可由任意向量表示
2). 向量组中任一向量可由向量组表示
3). 任意向量可由n维单位(基本)向量组表示

线性相关与线性无关

若存在一组不全为0的 k i k_i ki,使 k 1 ⋅ α 1 + k 2 ⋅ α 2 + ⋯ + k n ⋅ α n = 0 k_1 \cdot \alpha_1 + k_2 \cdot \alpha_2 + \cdots + k_n \cdot \alpha_n = 0 k1α1+k2α2++knαn=0,则 α 1 , α 2 , ⋯   , α n \alpha_1, \alpha_2, \cdots, \alpha_n α1,α2,,αn线性相关,否则为线性无关
1). 向量组中两向量曾比例,一定线性相关
2). 含零向量的任意向量组一定线性相关
3). 一个零向量必线性相关
4). 任意一个非零向量必线性无关
5). 线性无关的向量组,接长向量组也无关
6). 线性相关的向量组,截短向量组也相关
{ α s = ( a 1   a 2   ⋯   a n ) β s = ( b 1   b 2   ⋯   b m ) \begin {cases} \alpha_s = (a_1 ~ a_2 ~ \cdots ~ a_n) \\ \beta_s = (b_1 ~ b_2 ~ \cdots ~ b_m) \end {cases} {αs=(a1 a2  an)βs=(b1 b2  bm)
{ α l = ( a 1   a 2   ⋯   a n   ⋯   a s ) β l = ( b 1   b 2   ⋯   b m   ⋯   b k ) \begin {cases} \alpha_l = (a_1 ~ a_2 ~ \cdots ~ a_n ~ \cdots ~ a_s) \\ \beta_l = (b_1 ~ b_2 ~ \cdots ~ b_m ~ \cdots ~ b_k) \end {cases} {αl=(a1 a2  an  as)βl=(b1 b2  bm  bk)

线性组合与线性相关

定理1. α 1 , α 2 , ⋯   , α s \alpha_1, \alpha_2, \cdots, \alpha_s α1,α2,,αs线性相关 ⟺ \Longleftrightarrow 至少一个向量可由其余向量表示
定理2. α 1 , α 2 , ⋯   , α s \alpha_1, \alpha_2, \cdots, \alpha_s α1,α2,,αs线性无关 α 1 , α 2 , ⋯   , α s , β \alpha_1, \alpha_2, \cdots, \alpha_s, \beta α1,α2,,αs,β线性相关 ⟺ β \Longleftrightarrow \beta β可由 α 1 , α 2 , ⋯   , α s \alpha_1, \alpha_2, \cdots, \alpha_s α1,α2,,αs唯一表示

替换定理
1). α 1 , α 2 , ⋯   , α s \alpha_1, \alpha_2, \cdots, \alpha_s α1,α2,,αs线性无关,可由 β 1 , β 2 , ⋯   , β t \beta_1, \beta_2, \cdots, \beta_t β1,β2,,βt表示,则 s ≤ t s \leq t st
2). α 1 , α 2 , ⋯   , α s \alpha_1, \alpha_2, \cdots, \alpha_s α1,α2,,αs可由 β 1 , β 2 , ⋯   , β t \beta_1, \beta_2, \cdots, \beta_t β1,β2,,βt表示,若 s > t s > t s>t,则 α 1 , α 2 , ⋯   , α s \alpha_1, \alpha_2, \cdots, \alpha_s α1,α2,,αs线性相关

推论1. m个n维向量必线性相关, m > n m > n m>n
两个等价的线性无关向量组含向量的个数相同

向量组的秩:极大线性无关组含向量的个数
极大线性无关组:
α 1 , α 2 , ⋯   , α s \alpha_1, \alpha_2, \cdots, \alpha_s α1,α2,,αs的部分组 α 1 , α 2 , ⋯   , α r \alpha_1, \alpha_2, \cdots, \alpha_r α1,α2,,αr
1). α 1 , α 2 , ⋯   , α r \alpha_1, \alpha_2, \cdots, \alpha_r α1,α2,,αr线性无关;
2). 每个向量均可由 α 1 , α 2 , ⋯   , α r \alpha_1, \alpha_2, \cdots, \alpha_r α1,α2,,αr表示;
3). α 1 , α 2 , ⋯   , α r , α r + 1 \alpha_1, \alpha_2, \cdots, \alpha_r, \alpha_{r+1} α1,α2,,αr,αr+1线性相关
定理: α 1 , α 2 , ⋯   , α s \alpha_1, \alpha_2, \cdots, \alpha_s α1,α2,,αs可由 β 1 , β 2 , ⋯   , β t \beta_1, \beta_2, \cdots, \beta_t β1,β2,,βt表示,则 r ( α 1 , α 2 , ⋯   , α s ) ≤ r ( β 1 , β 2 , ⋯   , β t ) r(\alpha_1, \alpha_2, \cdots, \alpha_s) \leq r(\beta_1, \beta_2, \cdots, \beta_t) r(α1,α2,,αs)r(β1,β2,,βt)

行秩
矩阵每行为一个行向量,组成行向量组,其极大线性无关组的数量即为行秩,同理由列秩。
行秩 = 列秩 = 矩阵的秩
r ( A B ) = m i n { r ( A ) , r ( B ) } r(AB) = min\{r(A), r(B)\} r(AB)=min{r(A),r(B)}

行向量的线性关系与列向量的线性关系完全一样
极大线性无关组的求法:
1). 不管原向量是行或列,均按列构成矩阵;
2). 只做初等行变换,化为行简化阶梯形;
3). 首非零元所在列做极大线性无关组;
4). 其余向量表示系数直接写出即可
例3.3.3
α 1 = ( 1 − 2 2 − 1 ) \alpha_1 = \begin {pmatrix} 1 \\ -2 \\ 2 \\ -1 \end {pmatrix} α1=1221 α 2 = ( 2 − 4 8 0 ) \alpha_2 = \begin {pmatrix} 2 \\ -4 \\ 8 \\ 0 \end {pmatrix} α2=2480 α 3 = ( − 2 4 − 2 3 ) \alpha_3 = \begin {pmatrix} -2 \\ 4 \\ -2 \\ 3 \end {pmatrix} α3=2423 α 4 = ( 3 − 6 0 − 6 ) \alpha_4 = \begin {pmatrix} 3 \\ -6 \\ 0 \\ -6 \end {pmatrix} α4=3606的一个线性无关组,并用该线性无关组表示
解:
( 1 2 − 2 3 − 2 − 4 4 − 6 2 8 − 2 0 − 1 0 3 − 6 ) \begin {pmatrix} 1 & 2 & -2 & 3 \\ -2 & -4 & 4 & -6 \\ 2 & 8 & -2 & 0 \\ -1 & 0 & 3 & -6 \end {pmatrix} 1221248024233606 初 等 行 变 换 → \underrightarrow{初等行变换} ( 1 0 − 3 6 0 1 1 2 − 3 2 0 0 0 0 0 0 0 0 ) \begin {pmatrix} 1 & 0 & -3 & 6 \\ 0 & 1 & \frac{1}{2} & -\frac{3}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end {pmatrix} 100001003210062300
极大线性无关组为
β 1 = ( 1 0 0 0 ) \beta_1 = \begin {pmatrix} 1 \\ 0 \\ 0 \\ 0 \end {pmatrix} β1=1000 β 2 = ( 0 1 0 0 ) \beta_2 = \begin {pmatrix} 0 \\ 1 \\ 0 \\ 0 \end {pmatrix} β2=0100 β 3 = − 3 β 1 + 1 2 β 2 \beta_3 = -3 \beta_1 +\frac{1}{2} \beta_2 β3=3β1+21β2 β 4 = 6 β 1 − 3 2 β 2 \beta_4 = 6 \beta_1 - \frac{3}{2} \beta_2 β4=6β123β2
行向量的线性关系与列向量的线性关系完全一样,故有极大线性无关组为 α 1 = ( 1 − 2 2 − 1 ) \alpha_1 = \begin {pmatrix} 1 \\ -2 \\ 2 \\ -1 \end {pmatrix} α1=1221 α 2 = ( 2 − 4 8 0 ) \alpha_2 = \begin {pmatrix} 2 \\ -4 \\ 8 \\ 0 \end {pmatrix} α2=2480
α 3 = − 3 α 1 + 1 2 α 2 \alpha_3 = -3 \alpha_1 +\frac{1}{2} \alpha_2 α3=3α1+21α2 α 4 = 6 α 1 − 3 2 α 2 \alpha_4 = 6 \alpha_1 - \frac{3}{2} \alpha_2 α4=6α123α2

线性方程组

鸡兔同笼问题:
例,有鸡兔共10只,脚30只,问鸡几只,兔几只
解:设鸡 x 1 x_1 x1只,兔 x 2 x_2 x2只,有 { x 1 + x 2 = 10 2 x 1 + 4 x 2 = 30 \begin {cases} x_1 + x_2 = 10 \\ 2 x_1 + 4 x_2 = 30 \end {cases} {x1+x2=102x1+4x2=30 表 示 为 增 广 矩 阵 → \underrightarrow{表示为增广矩阵} 广 ( 1 1 10 2 4 30 ) \left( \begin {array} {cc|c} 1 & 1 & 10 \\ 2 & 4 & 30 \end {array} \right) (12141030) 经初等行变换得 ( 1 0 5 0 1 5 ) \left( \begin {array} {cc|c} 1 & 0 & 5 \\ 0 & 1 & 5 \end {array} \right) (100155),则有 { x 1 = 5 x 2 = 5 \begin {cases} x_1 = 5 \\ x_2 = 5 \end {cases} {x1=5x2=5

例:有 { x 1 + x 2 + x 3 = 1 x 1 − x 2 − x 3 = − 3 2 x 1 + 9 x 2 + 10 x 3 = 11 \begin {cases} x_1 + x_2 + x_3 = 1 \\ x_1 - x_2 - x_3 = -3 \\ 2x_1 + 9x_2 + 10x_3 = 11 \end {cases} x1+x2+x3=1x1x2x3=32x1+9x2+10x3=11,求 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3
解:表示为增广矩阵 A ‾ \overline{A} A = ( 1 1 1 1 1 − 1 − 1 − 3 2 9 10 11 ) = \left( \begin {array} {ccc|c} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & -3 \\ 2 & 9 & 10 & 11 \end {array} \right) =11211911101311经初等变换有 = ( 1 0 0 − 1 0 1 0 7 0 0 1 − 5 ) = \left( \begin {array} {ccc|c} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & -5 \end {array} \right) =100010001175,则有 { x 1 = − 1 x 2 = 7 x 3 = − 5 \begin {cases} x_1 = -1 \\ x_2 = 7 \\ x_3 = -5 \end {cases} x1=1x2=7x3=5

r ( A ) = r ( A ‾ ) = n = r(A) = r(\overline{A}) = n = r(A)=r(A)=n=未知量个数,方程有唯一解;
r ( A ) = r ( A ‾ ) &lt; n = r(A) = r(\overline{A}) &lt; n = r(A)=r(A)<n=未知量个数,方程有无穷解;
r ( A ) = ̸ r ( A ‾ ) r(A) =\not r(\overline{A}) r(A)≠r(A),方程无解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值