20190801《线性代数》copy youdao

矩阵乘法

矩阵相乘前提条件:
第一个矩阵的列数 = 第二个矩阵的行数

中间相等取两头

A i × j B j × k = C i × k A_{i \times j} B_{j \times k} = C_{i \times k} Ai×jBj×k=Ci×k

矩阵相乘不满足
A B = ̸ B A AB =\not BA AB≠BA
A B = 0 AB = 0 AB=0不能推得 A = 0   o r   B = 0 A = 0 ~ or ~ B = 0 A=0 or B=0
A B = A C AB = AC AB=AC不能推得 B = C B = C B=C

矩阵相乘满足
A i × j 0 ⃗ j × k A_{i \times j} \vec{0}_{j \times k} Ai×j0 j×k任何矩阵乘以零矩阵都是零矩阵
A E = A    E A = A AE = A ~~ EA = A AE=A  EA=A单位阵左乘右乘矩阵都等于原矩阵
结合律: ( A B ) C = A ( B C ) (AB)C = A(BC) (AB)C=A(BC)
分配律: A ( B + C ) = A B + A C    ( A + B ) C = A C + B C A(B+C) = AB + AC ~~ (A+B)C = AC + BC A(B+C)=AB+AC  (A+B)C=AC+BC
k ( A B ) = ( k A ) B = A ( k B ) k(AB) = (kA)B = A(kB) k(AB)=(kA)B=A(kB)

例2.7
{ x 1 = y 1 − y 2 x 2 = y 1 + y 2 \begin {cases} x_1 = y_1 - y_2 \\ x_2 = y_1 + y_2 \end {cases} {x1=y1y2x2=y1+y2 { y 1 = z 1 + z 2 + 2 z 3 y 2 = z 1 − 2 z 2 + z 3 \begin {cases} y_1 = z_1 + z_2 + 2z_3 \\ y_2 = z_1 - 2z_2 + z_3 \end {cases} {y1=z1+z2+2z3y2=z12z2+z3 { z 1 = u 1 + u 2 z 2 = u 1 z 3 = − u 1 + u 2 \begin {cases} z_1 = u_1 + u_2 \\ z_2 = u_1 \\ z_3 = -u_1 + u_2 \end {cases} z1=u1+u2z2=u1z3=u1+u2
则有 ( x 1 x 2 ) \begin {pmatrix} x_1 \\ x_2 \end {pmatrix} (x1x2) = ( 1 − 1 1 1 ) = \begin {pmatrix} 1 & -1 \\ 1 & 1 \end {pmatrix} =(1111) ( y 1 y 2 ) \begin {pmatrix} y_1 \\ y_2 \end {pmatrix} (y1y2)

( y 1 y 2 ) \begin {pmatrix} y_1 \\ y_2 \end {pmatrix} (y1y2) = ( 1 1 2 1 − 2 1 ) = \begin {pmatrix} 1 & 1 & 2 \\ 1 & -2 & 1 \end {pmatrix} =(111221) ( z 1 z 2 z 3 ) \begin {pmatrix} z_1 \\ z_2 \\ z_3 \end {pmatrix} z1z2z3

( z 1 z 2 z 3 ) \begin {pmatrix} z_1 \\ z_2 \\ z_3 \end {pmatrix} z1z2z3 = ( 1 1 1 0 − 1 1 ) = \begin {pmatrix} 1 & 1 \\ 1 & 0 \\ -1 & 1 \end {pmatrix} =111101 ( u 1 u 2 ) \begin {pmatrix} u_1 \\ u_2 \end {pmatrix} (u1u2)

矩阵与行列式不同
矩阵A中每个元素皆有公因子k方可外提公因子
行列式中一行()中有公因子即可外提

转置

( A B C D ) T = D T C T B T A T (ABCD)^T = D^T C^T B^T A^T (ABCD)T=DTCTBTAT
对称矩阵 A T = A A^T = A AT=A
反对称矩阵(主对角线元素全为零) a i j = − a j i    A T = − A a_{ij} = - a_{ji} ~~ A^T = -A aij=aji  AT=A
∣ k A ∣ = k n ∣ A ∣ |kA| = k^n |A| kA=knA

伴随矩阵(按行求,按列放)

定理1: A A ∗ = A ∗ A = ∣ A ∣ E A A^* = A^* A = |A| E AA=AA=AE
1). 求方阵A所有元素的代数余子式
2). 按行求的代数余子式按列放,记作 A ∗ A^* A
3). 依据伴随矩阵的定义,只有一个元素的矩阵 B = ( 5 ) B = (5) B=(5) ( 5 ) B ∗ = ∣ B ∣ E → B ∗ = ( 1 ) (5) B^* = |B| E \rightarrow B^* = (1) (5)B=BEB=(1)
推论1: ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*| = |A|^{n-1} A=An1
证: ∣ A ∗ A ∣ = ∣ ∣ A ∣ E ∣ = ∣ A ∣ n → ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^* A| = ||A| E| = |A|^n \rightarrow |A^*| = |A|^{n-1} AA=AE=AnA=An1

逆矩阵

设A为n阶矩阵,若存在n阶方阵B,使 A B = B A = E AB = BA = E AB=BA=E则称A与B互为逆矩阵
1). 未必所有方阵皆可逆;
2). 若A可逆,则逆矩阵是唯一的
证:假设 A B 1 = B 1 A = E A B_1 = B_1 A = E AB1=B1A=E,且 A B 2 = B 2 A = E A B_2 = B_2 A = E AB2=B2A=E,则有 B 1 = B 1 E = B 1 ( A B 2 ) = ( B 1 A ) B 2 = E B 2 = B 2 B_1 = B_1 E = B_1 (A B_2) = (B_1 A) B_2 = E B_2 = B_2 B1=B1E=B1(AB2)=(B1A)B2=EB2=B2与假设不符,故逆矩阵唯一。
∣ A ∣ = ̸ 0 |A| =\not 0 A≠0,则称A非奇异、非退化、满秩、可逆;
∣ A ∣ = 0 |A| = 0 A=0,则称A奇异、退化、降秩、不可逆。
定理:A可逆的充要条件 ∣ A ∣ = ̸ 0 |A| =\not 0 A≠0,则A的逆矩阵等于 A ∗ 1 ∣ A ∣ A^* \frac{1}{|A|} AA1
( A T ) − 1 = ( A − 1 ) T (A^T)^{-1} = (A^{-1})^T (AT)1=(A1)T
k = ̸ 0 k =\not 0 k≠0,则 ( k A ) − 1 = k − 1 A − 1 (kA)^{-1} = k^{-1} A^{-1} (kA)1=k1A1
A A A可逆,则 ∣ A − 1 ∣ = ∣ A ∣ − 1 |A^{-1}| = |A|^{-1} A1=A1
A A A可逆,则 ( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^*)^* = |A|^{n-2} A (A)=An2A
  证: ( A ∗ ) ∗ = ∣ A ∗ ∣ ( A ∗ ) − 1 = ∣ A ∣ n − 1 ( ∣ A ∣ A − 1 ) − 1 = ∣ A ∣ n − 2 A (A^*)^* = |A^*| (A^*)^{-1} = |A|^{n-1} (|A| A^{-1})^{-1} = |A|^{n-2} A (A)=A(A)1=An1(AA1)1=An2A
A A A可逆,则 A ∗ A^* A可逆, ( A ∗ ) − 1 = 1 ∣ A ∣ A (A^*)^{-1} = \frac{1}{|A|} A (A)1=A1A
  证: ( A ∗ ) − 1 = 1 ∣ A ∗ ∣ A ∗ ∗ = 1 ∣ A ∣ n − 1 ∣ A ∣ n − 2 A = 1 ∣ A ∣ A (A^*)^{-1} = \frac{1}{|A^*|} A^{**} = \frac{1}{|A|^{n-1}} |A|^{n-2} A = \frac{1}{|A|} A (A)1=A1A=An11An2A=A1A

例3.5
已知 A + B = A B A + B = AB A+B=AB,若 A − E A - E AE可逆,求 A − E A - E AE的逆矩阵
解: A B − A − B + E = E ⇒ A B − A E − B + E = E ⇒ A ( B − E ) − E ( B − E ) = E ⇒ ( A − E ) ( B − E ) = E AB - A - B + E = E \Rightarrow AB - AE - B + E = E \Rightarrow A(B - E) - E(B - E) = E \Rightarrow (A - E)(B - E) = E ABAB+E=EABAEB+E=EA(BE)E(BE)=E(AE)(BE)=E A − E A - E AE的逆矩阵为 B − E B - E BE

矩阵方程

1). 矩阵不能减数,要补充称数量阵
2). 矩阵不能除,要同时左乘/右乘逆矩阵消掉
3). 要先判断行列式不等于零才能使用逆矩阵

分块矩阵

标准形:
1). 从左上角开始一串1(不能中断),其余位置全为零
2). 标准形不一定是方阵
3). 可分为以E为左上角元素的分块矩阵
4). 特别的,零矩阵也是标准形

分块矩阵的转置
1). 把子块视为元素求转置
2). 对每个子块求转置

例6. H = ( A C 0 B ) H = \begin {pmatrix} A & C \\ 0 & B \end {pmatrix} H=(A0CB)A为m阶可逆矩阵,B为n阶可逆矩阵,求 H − 1 H^{-1} H1
解: ∣ H ∣ = ∣ A C 0 B ∣ = ∣ A ∣ ∣ B ∣ = ̸ 0 |H| = \begin {vmatrix} A & C \\ 0 & B \end {vmatrix} = |A| |B| =\not 0 H=A0CB=AB≠0
即H可逆
H − 1 = ( x 1 x 2 x 3 x 4 ) H^{-1} = \begin {pmatrix} x_1 & x_2 \\ x_3 & x_4 \end {pmatrix} H1=(x1x3x2x4) → ( A x 1 + C x 3 A x 2 + C x 4 B x 3 B x 4 ) = E = ( E 0 0 E ) \rightarrow \begin {pmatrix} Ax_1 + Cx_3 & Ax_2 + Cx_4 \\ Bx_3 & Bx_4 \end {pmatrix} = E = \begin {pmatrix} E & 0 \\ 0 & E \end {pmatrix} (Ax1+Cx3Bx3Ax2+Cx4Bx4)=E=(E00E) → { A x 1 + C x 3 = E A x 2 + C x 4 = 0 B x 3 = 0 B x 4 = E \rightarrow \begin {cases} Ax_1 + Cx_3 = E \\ Ax_2 + Cx_4 = 0 \\ Bx_3 = 0 \\ Bx_4 = E \end {cases} Ax1+Cx3=EAx2+Cx4=0Bx3=0Bx4=E → { x 1 = A − 1 x 2 = − A − 1 C B − 1 x 3 = 0 x 4 = B − 1 \rightarrow \begin {cases} x_1 = A^{-1} \\ x_2 = -A^{-1} C B^{-1} \\ x_3 = 0 \\ x_4 = B^{-1} \end {cases} x1=A1x2=A1CB1x3=0x4=B1
H − 1 = ( A − 1 − A − 1 C B − 1 0 B − 1 ) H^{-1} = \begin {pmatrix} A^{-1} & -A^{-1} C B^{-1} \\ 0 & B^{-1} \end {pmatrix} H1=(A10A1CB1B1)

仅对角线元素不为零的分块矩阵,逆矩阵是元素为每个分块的逆矩阵的对角线矩阵
初等变换

1). 交换两行;
2). 用 k   ( k = ̸ 0 ) k ~ (k =\not 0) k (k≠0)乘以某一行;
3). 某行的 i   ( i = ̸ 0 ) i ~ (i =\not 0) i (i≠0)倍加到另一行上去。

定理:任意矩阵通过初等行变换化为标准形,标准形左上角连续1的个数为矩阵的秩,记作 r ( A ) r(A) r(A)

初等方阵
对E做一次初等行变换得到的方阵
1). 交换两行得到的初等方阵,记作 E ( i , j ) E (i, j) E(i,j)
2). 用 k   ( k = ̸ 0 ) k ~ (k =\not 0) k (k≠0)乘以某一行,记作 E ( i ( k ) ) E (i(k)) E(i(k))
3). 某行的 i   ( i = ̸ 0 ) i ~ (i =\not 0) i (i≠0)倍加到另一行上去,记作 E ( i , j ( k ) ) E (i,j(k)) E(i,j(k))
初等方阵均可逆
初等方阵的逆矩阵也是初等方阵
初等方阵的转置也是初等方阵

A, B等价 ⟺ \Longleftrightarrow 存在可逆初等方阵P,Q,使 P A Q = B P A Q = B PAQ=B
A可逆 ⟺ \Longleftrightarrow A的标准形为E
A可逆,则 ∣ A ∣ = ̸ 0 |A| =\not 0 A≠0,且A的标准形为E

矩阵计算容易出错,计算完成后A逆与A相乘,看结果是不是E

####矩阵的秩
非零子式的最高阶数(反映矩阵行之间的差异性)英文为rank
1). 若A为n阶方阵,则 r ( A ) = n r(A) = n r(A)=n是A可逆的充要条件,即 ∣ A ∣ = ̸ 0 |A| =\not 0 A≠0

阶梯形矩阵
1). 若有零行,零行在非零行下方;
2). 左起首个非零元素左边零的个数随行数严格增加

行简化阶梯形
1). 非零行的首非零元是1
2). 首非零元所在列其余元素是0

矩阵的秩等于阶梯形矩阵的非零行行数
初等行变换不会改变矩阵的秩

求矩阵秩的方法
1). 变换为标准形,非零行的行数为矩阵的秩
2). 行变换为阶梯形,非零行的行数为矩阵的秩

例3.8 设有四阶矩阵 A = ( k 1 1 1 1 k 1 1 1 1 k 1 1 1 1 k ) A = \begin {pmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k \end {pmatrix} A=k1111k1111k1111k r ( A ) = 3 r(A) = 3 r(A)=3,求k。
解: ∣ k 1 1 1 1 k 1 1 1 1 k 1 1 1 1 k ∣ \begin {vmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k \end {vmatrix} k1111k1111k1111k → ∣ k + 3 1 1 1 k + 3 k 1 1 k + 3 1 k 1 k + 3 1 1 k ∣ \rightarrow \begin {vmatrix} k+3 & 1 & 1 & 1 \\ k+3 & k & 1 & 1 \\ k+3 & 1 & k & 1 \\ k+3 & 1 & 1 & k \end {vmatrix} k+3k+3k+3k+31k1111k1111k → ( k + 3 ) ∣ 1 1 1 1 1 k 1 1 1 1 k 1 1 1 1 k ∣ \rightarrow (k+3) \begin {vmatrix} 1 & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k \end {vmatrix} (k+3)11111k1111k1111k → ( k + 3 ) ∣ 1 0 0 0 1 k − 1 0 0 1 0 k − 1 0 1 0 0 k − 1 ∣ \rightarrow (k+3) \begin {vmatrix} 1 & 0 & 0 & 0 \\ 1 & k-1 & 0 & 0 \\ 1 & 0 & k-1 & 0 \\ 1 & 0 & 0 & k-1 \end {vmatrix} (k+3)11110k10000k10000k1 → ( k + 3 ) ( k − 1 ) 3 \rightarrow (k+3)(k-1)^3 (k+3)(k1)3
因为 r ( A ) = 3 &lt; 4 r(A) = 3 &lt; 4 r(A)=3<4,故 ( k + 3 ) ( k − 1 ) 3 = 0 (k+3)(k-1)^3 = 0 (k+3)(k1)3=0,得 { k = − 3 k = 1 \begin {cases} k = -3 \\ k = 1 \end {cases} {k=3k=1
k = 1 k = 1 k=1 r ( A ) = 0 r(A) = 0 r(A)=0,故 k = − 3 k = -3 k=3

性质1. 矩阵A的秩与A的转置的秩相等
性质2. 矩阵乘以可逆矩阵,秩不变
A A A m × n m \times n m×n阶矩阵, P P P m m m阶可逆方阵, Q Q Q n n n阶可逆方阵
r ( A ) = r ( P A ) = r ( A Q ) = r ( P A Q ) r(A) = r(PA) = r(AQ) = r(PAQ) r(A)=r(PA)=r(AQ)=r(PAQ)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值