矩阵乘法
矩阵相乘前提条件:
第一个矩阵的列数 = 第二个矩阵的行数
中间相等取两头
A i × j B j × k = C i × k A_{i \times j} B_{j \times k} = C_{i \times k} Ai×jBj×k=Ci×k
矩阵相乘不满足:
A
B
=
̸
B
A
AB =\not BA
AB≠BA
A
B
=
0
AB = 0
AB=0不能推得
A
=
0
o
r
B
=
0
A = 0 ~ or ~ B = 0
A=0 or B=0
A
B
=
A
C
AB = AC
AB=AC不能推得
B
=
C
B = C
B=C
矩阵相乘满足:
A
i
×
j
0
⃗
j
×
k
A_{i \times j} \vec{0}_{j \times k}
Ai×j0j×k任何矩阵乘以零矩阵都是零矩阵
A
E
=
A
E
A
=
A
AE = A ~~ EA = A
AE=A EA=A单位阵左乘右乘矩阵都等于原矩阵
结合律:
(
A
B
)
C
=
A
(
B
C
)
(AB)C = A(BC)
(AB)C=A(BC)
分配律:
A
(
B
+
C
)
=
A
B
+
A
C
(
A
+
B
)
C
=
A
C
+
B
C
A(B+C) = AB + AC ~~ (A+B)C = AC + BC
A(B+C)=AB+AC (A+B)C=AC+BC
k
(
A
B
)
=
(
k
A
)
B
=
A
(
k
B
)
k(AB) = (kA)B = A(kB)
k(AB)=(kA)B=A(kB)
例2.7
{
x
1
=
y
1
−
y
2
x
2
=
y
1
+
y
2
\begin {cases} x_1 = y_1 - y_2 \\ x_2 = y_1 + y_2 \end {cases}
{x1=y1−y2x2=y1+y2,
{
y
1
=
z
1
+
z
2
+
2
z
3
y
2
=
z
1
−
2
z
2
+
z
3
\begin {cases} y_1 = z_1 + z_2 + 2z_3 \\ y_2 = z_1 - 2z_2 + z_3 \end {cases}
{y1=z1+z2+2z3y2=z1−2z2+z3,
{
z
1
=
u
1
+
u
2
z
2
=
u
1
z
3
=
−
u
1
+
u
2
\begin {cases} z_1 = u_1 + u_2 \\ z_2 = u_1 \\ z_3 = -u_1 + u_2 \end {cases}
⎩⎪⎨⎪⎧z1=u1+u2z2=u1z3=−u1+u2
则有
(
x
1
x
2
)
\begin {pmatrix} x_1 \\ x_2 \end {pmatrix}
(x1x2)
=
(
1
−
1
1
1
)
= \begin {pmatrix} 1 & -1 \\ 1 & 1 \end {pmatrix}
=(11−11)
(
y
1
y
2
)
\begin {pmatrix} y_1 \\ y_2 \end {pmatrix}
(y1y2)
( y 1 y 2 ) \begin {pmatrix} y_1 \\ y_2 \end {pmatrix} (y1y2) = ( 1 1 2 1 − 2 1 ) = \begin {pmatrix} 1 & 1 & 2 \\ 1 & -2 & 1 \end {pmatrix} =(111−221) ( z 1 z 2 z 3 ) \begin {pmatrix} z_1 \\ z_2 \\ z_3 \end {pmatrix} ⎝⎛z1z2z3⎠⎞
( z 1 z 2 z 3 ) \begin {pmatrix} z_1 \\ z_2 \\ z_3 \end {pmatrix} ⎝⎛z1z2z3⎠⎞ = ( 1 1 1 0 − 1 1 ) = \begin {pmatrix} 1 & 1 \\ 1 & 0 \\ -1 & 1 \end {pmatrix} =⎝⎛11−1101⎠⎞ ( u 1 u 2 ) \begin {pmatrix} u_1 \\ u_2 \end {pmatrix} (u1u2)
矩阵与行列式不同
矩阵A中每个元素皆有公因子k方可外提公因子
行列式中一行(列)中有公因子即可外提
转置
(
A
B
C
D
)
T
=
D
T
C
T
B
T
A
T
(ABCD)^T = D^T C^T B^T A^T
(ABCD)T=DTCTBTAT
对称矩阵
A
T
=
A
A^T = A
AT=A
反对称矩阵(主对角线元素全为零)
a
i
j
=
−
a
j
i
A
T
=
−
A
a_{ij} = - a_{ji} ~~ A^T = -A
aij=−aji AT=−A
∣
k
A
∣
=
k
n
∣
A
∣
|kA| = k^n |A|
∣kA∣=kn∣A∣
伴随矩阵(按行求,按列放)
定理1:
A
A
∗
=
A
∗
A
=
∣
A
∣
E
A A^* = A^* A = |A| E
AA∗=A∗A=∣A∣E
1). 求方阵A所有元素的代数余子式
2). 按行求的代数余子式按列放,记作
A
∗
A^*
A∗
3). 依据伴随矩阵的定义,只有一个元素的矩阵
B
=
(
5
)
B = (5)
B=(5),
(
5
)
B
∗
=
∣
B
∣
E
→
B
∗
=
(
1
)
(5) B^* = |B| E \rightarrow B^* = (1)
(5)B∗=∣B∣E→B∗=(1)
推论1:
∣
A
∗
∣
=
∣
A
∣
n
−
1
|A^*| = |A|^{n-1}
∣A∗∣=∣A∣n−1
证:
∣
A
∗
A
∣
=
∣
∣
A
∣
E
∣
=
∣
A
∣
n
→
∣
A
∗
∣
=
∣
A
∣
n
−
1
|A^* A| = ||A| E| = |A|^n \rightarrow |A^*| = |A|^{n-1}
∣A∗A∣=∣∣A∣E∣=∣A∣n→∣A∗∣=∣A∣n−1
逆矩阵
设A为n阶矩阵,若存在n阶方阵B,使
A
B
=
B
A
=
E
AB = BA = E
AB=BA=E则称A与B互为逆矩阵
1). 未必所有方阵皆可逆;
2). 若A可逆,则逆矩阵是唯一的
证:假设
A
B
1
=
B
1
A
=
E
A B_1 = B_1 A = E
AB1=B1A=E,且
A
B
2
=
B
2
A
=
E
A B_2 = B_2 A = E
AB2=B2A=E,则有
B
1
=
B
1
E
=
B
1
(
A
B
2
)
=
(
B
1
A
)
B
2
=
E
B
2
=
B
2
B_1 = B_1 E = B_1 (A B_2) = (B_1 A) B_2 = E B_2 = B_2
B1=B1E=B1(AB2)=(B1A)B2=EB2=B2与假设不符,故逆矩阵唯一。
若
∣
A
∣
=
̸
0
|A| =\not 0
∣A∣≠0,则称A非奇异、非退化、满秩、可逆;
若
∣
A
∣
=
0
|A| = 0
∣A∣=0,则称A奇异、退化、降秩、不可逆。
定理:A可逆的充要条件
∣
A
∣
=
̸
0
|A| =\not 0
∣A∣≠0,则A的逆矩阵等于
A
∗
1
∣
A
∣
A^* \frac{1}{|A|}
A∗∣A∣1
(
A
T
)
−
1
=
(
A
−
1
)
T
(A^T)^{-1} = (A^{-1})^T
(AT)−1=(A−1)T
若
k
=
̸
0
k =\not 0
k≠0,则
(
k
A
)
−
1
=
k
−
1
A
−
1
(kA)^{-1} = k^{-1} A^{-1}
(kA)−1=k−1A−1
若
A
A
A可逆,则
∣
A
−
1
∣
=
∣
A
∣
−
1
|A^{-1}| = |A|^{-1}
∣A−1∣=∣A∣−1
若
A
A
A可逆,则
(
A
∗
)
∗
=
∣
A
∣
n
−
2
A
(A^*)^* = |A|^{n-2} A
(A∗)∗=∣A∣n−2A
证:
(
A
∗
)
∗
=
∣
A
∗
∣
(
A
∗
)
−
1
=
∣
A
∣
n
−
1
(
∣
A
∣
A
−
1
)
−
1
=
∣
A
∣
n
−
2
A
(A^*)^* = |A^*| (A^*)^{-1} = |A|^{n-1} (|A| A^{-1})^{-1} = |A|^{n-2} A
(A∗)∗=∣A∗∣(A∗)−1=∣A∣n−1(∣A∣A−1)−1=∣A∣n−2A
若
A
A
A可逆,则
A
∗
A^*
A∗可逆,
(
A
∗
)
−
1
=
1
∣
A
∣
A
(A^*)^{-1} = \frac{1}{|A|} A
(A∗)−1=∣A∣1A
证:
(
A
∗
)
−
1
=
1
∣
A
∗
∣
A
∗
∗
=
1
∣
A
∣
n
−
1
∣
A
∣
n
−
2
A
=
1
∣
A
∣
A
(A^*)^{-1} = \frac{1}{|A^*|} A^{**} = \frac{1}{|A|^{n-1}} |A|^{n-2} A = \frac{1}{|A|} A
(A∗)−1=∣A∗∣1A∗∗=∣A∣n−11∣A∣n−2A=∣A∣1A
例3.5
已知
A
+
B
=
A
B
A + B = AB
A+B=AB,若
A
−
E
A - E
A−E可逆,求
A
−
E
A - E
A−E的逆矩阵
解:
A
B
−
A
−
B
+
E
=
E
⇒
A
B
−
A
E
−
B
+
E
=
E
⇒
A
(
B
−
E
)
−
E
(
B
−
E
)
=
E
⇒
(
A
−
E
)
(
B
−
E
)
=
E
AB - A - B + E = E \Rightarrow AB - AE - B + E = E \Rightarrow A(B - E) - E(B - E) = E \Rightarrow (A - E)(B - E) = E
AB−A−B+E=E⇒AB−AE−B+E=E⇒A(B−E)−E(B−E)=E⇒(A−E)(B−E)=E即
A
−
E
A - E
A−E的逆矩阵为
B
−
E
B - E
B−E
矩阵方程
1). 矩阵不能减数,要补充称数量阵
2). 矩阵不能除,要同时左乘/右乘逆矩阵消掉
3). 要先判断行列式不等于零才能使用逆矩阵
分块矩阵
标准形:
1). 从左上角开始一串1(不能中断),其余位置全为零
2). 标准形不一定是方阵
3). 可分为以E为左上角元素的分块矩阵
4). 特别的,零矩阵也是标准形
分块矩阵的转置
1). 把子块视为元素求转置
2). 对每个子块求转置
例6.
H
=
(
A
C
0
B
)
H = \begin {pmatrix} A & C \\ 0 & B \end {pmatrix}
H=(A0CB)A为m阶可逆矩阵,B为n阶可逆矩阵,求
H
−
1
H^{-1}
H−1
解:
∣
H
∣
=
∣
A
C
0
B
∣
=
∣
A
∣
∣
B
∣
=
̸
0
|H| = \begin {vmatrix} A & C \\ 0 & B \end {vmatrix} = |A| |B| =\not 0
∣H∣=∣∣∣∣A0CB∣∣∣∣=∣A∣∣B∣≠0
即H可逆
设
H
−
1
=
(
x
1
x
2
x
3
x
4
)
H^{-1} = \begin {pmatrix} x_1 & x_2 \\ x_3 & x_4 \end {pmatrix}
H−1=(x1x3x2x4)
→
(
A
x
1
+
C
x
3
A
x
2
+
C
x
4
B
x
3
B
x
4
)
=
E
=
(
E
0
0
E
)
\rightarrow \begin {pmatrix} Ax_1 + Cx_3 & Ax_2 + Cx_4 \\ Bx_3 & Bx_4 \end {pmatrix} = E = \begin {pmatrix} E & 0 \\ 0 & E \end {pmatrix}
→(Ax1+Cx3Bx3Ax2+Cx4Bx4)=E=(E00E)
→
{
A
x
1
+
C
x
3
=
E
A
x
2
+
C
x
4
=
0
B
x
3
=
0
B
x
4
=
E
\rightarrow \begin {cases} Ax_1 + Cx_3 = E \\ Ax_2 + Cx_4 = 0 \\ Bx_3 = 0 \\ Bx_4 = E \end {cases}
→⎩⎪⎪⎪⎨⎪⎪⎪⎧Ax1+Cx3=EAx2+Cx4=0Bx3=0Bx4=E
→
{
x
1
=
A
−
1
x
2
=
−
A
−
1
C
B
−
1
x
3
=
0
x
4
=
B
−
1
\rightarrow \begin {cases} x_1 = A^{-1} \\ x_2 = -A^{-1} C B^{-1} \\ x_3 = 0 \\ x_4 = B^{-1} \end {cases}
→⎩⎪⎪⎪⎨⎪⎪⎪⎧x1=A−1x2=−A−1CB−1x3=0x4=B−1
即
H
−
1
=
(
A
−
1
−
A
−
1
C
B
−
1
0
B
−
1
)
H^{-1} = \begin {pmatrix} A^{-1} & -A^{-1} C B^{-1} \\ 0 & B^{-1} \end {pmatrix}
H−1=(A−10−A−1CB−1B−1)
仅对角线元素不为零的分块矩阵,逆矩阵是元素为每个分块的逆矩阵的对角线矩阵
初等变换
1). 交换两行;
2). 用
k
(
k
=
̸
0
)
k ~ (k =\not 0)
k (k≠0)乘以某一行;
3). 某行的
i
(
i
=
̸
0
)
i ~ (i =\not 0)
i (i≠0)倍加到另一行上去。
定理:任意矩阵通过初等行变换化为标准形,标准形左上角连续1的个数为矩阵的秩,记作 r ( A ) r(A) r(A)
初等方阵
对E做一次初等行变换得到的方阵
1). 交换两行得到的初等方阵,记作
E
(
i
,
j
)
E (i, j)
E(i,j)
2). 用
k
(
k
=
̸
0
)
k ~ (k =\not 0)
k (k≠0)乘以某一行,记作
E
(
i
(
k
)
)
E (i(k))
E(i(k))
3). 某行的
i
(
i
=
̸
0
)
i ~ (i =\not 0)
i (i≠0)倍加到另一行上去,记作
E
(
i
,
j
(
k
)
)
E (i,j(k))
E(i,j(k))
初等方阵均可逆
初等方阵的逆矩阵也是初等方阵
初等方阵的转置也是初等方阵
A, B等价
⟺
\Longleftrightarrow
⟺存在可逆初等方阵P,Q,使
P
A
Q
=
B
P A Q = B
PAQ=B
A可逆
⟺
\Longleftrightarrow
⟺A的标准形为E
A可逆,则
∣
A
∣
=
̸
0
|A| =\not 0
∣A∣≠0,且A的标准形为E
矩阵计算容易出错,计算完成后A逆与A相乘,看结果是不是E
####矩阵的秩
非零子式的最高阶数(反映矩阵行之间的差异性)英文为rank
1). 若A为n阶方阵,则
r
(
A
)
=
n
r(A) = n
r(A)=n是A可逆的充要条件,即
∣
A
∣
=
̸
0
|A| =\not 0
∣A∣≠0
阶梯形矩阵
1). 若有零行,零行在非零行下方;
2). 左起首个非零元素左边零的个数随行数严格增加
行简化阶梯形
1). 非零行的首非零元是1
2). 首非零元所在列其余元素是0
矩阵的秩等于阶梯形矩阵的非零行行数
初等行变换不会改变矩阵的秩
求矩阵秩的方法
1). 变换为标准形,非零行的行数为矩阵的秩
2). 行变换为阶梯形,非零行的行数为矩阵的秩
例3.8 设有四阶矩阵
A
=
(
k
1
1
1
1
k
1
1
1
1
k
1
1
1
1
k
)
A = \begin {pmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k \end {pmatrix}
A=⎝⎜⎜⎛k1111k1111k1111k⎠⎟⎟⎞,
r
(
A
)
=
3
r(A) = 3
r(A)=3,求k。
解:
∣
k
1
1
1
1
k
1
1
1
1
k
1
1
1
1
k
∣
\begin {vmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k \end {vmatrix}
∣∣∣∣∣∣∣∣k1111k1111k1111k∣∣∣∣∣∣∣∣
→
∣
k
+
3
1
1
1
k
+
3
k
1
1
k
+
3
1
k
1
k
+
3
1
1
k
∣
\rightarrow \begin {vmatrix} k+3 & 1 & 1 & 1 \\ k+3 & k & 1 & 1 \\ k+3 & 1 & k & 1 \\ k+3 & 1 & 1 & k \end {vmatrix}
→∣∣∣∣∣∣∣∣k+3k+3k+3k+31k1111k1111k∣∣∣∣∣∣∣∣
→
(
k
+
3
)
∣
1
1
1
1
1
k
1
1
1
1
k
1
1
1
1
k
∣
\rightarrow (k+3) \begin {vmatrix} 1 & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k \end {vmatrix}
→(k+3)∣∣∣∣∣∣∣∣11111k1111k1111k∣∣∣∣∣∣∣∣
→
(
k
+
3
)
∣
1
0
0
0
1
k
−
1
0
0
1
0
k
−
1
0
1
0
0
k
−
1
∣
\rightarrow (k+3) \begin {vmatrix} 1 & 0 & 0 & 0 \\ 1 & k-1 & 0 & 0 \\ 1 & 0 & k-1 & 0 \\ 1 & 0 & 0 & k-1 \end {vmatrix}
→(k+3)∣∣∣∣∣∣∣∣11110k−10000k−10000k−1∣∣∣∣∣∣∣∣
→
(
k
+
3
)
(
k
−
1
)
3
\rightarrow (k+3)(k-1)^3
→(k+3)(k−1)3
因为
r
(
A
)
=
3
<
4
r(A) = 3 < 4
r(A)=3<4,故
(
k
+
3
)
(
k
−
1
)
3
=
0
(k+3)(k-1)^3 = 0
(k+3)(k−1)3=0,得
{
k
=
−
3
k
=
1
\begin {cases} k = -3 \\ k = 1 \end {cases}
{k=−3k=1
当
k
=
1
k = 1
k=1,
r
(
A
)
=
0
r(A) = 0
r(A)=0,故
k
=
−
3
k = -3
k=−3
性质1. 矩阵A的秩与A的转置的秩相等
性质2. 矩阵乘以可逆矩阵,秩不变
A
A
A为
m
×
n
m \times n
m×n阶矩阵,
P
P
P为
m
m
m阶可逆方阵,
Q
Q
Q为
n
n
n阶可逆方阵
r
(
A
)
=
r
(
P
A
)
=
r
(
A
Q
)
=
r
(
P
A
Q
)
r(A) = r(PA) = r(AQ) = r(PAQ)
r(A)=r(PA)=r(AQ)=r(PAQ)