第6章 容斥原理

第6章 容斥原理

6.1 容斥原理

用于重叠集合的并集计数

也用于重叠集合的补集的交集计数

用韦恩图想比较直观

【例】:求1到1000不能被5,6或8整除的数的个数

解:设 A 1 , A 2 , A 3 A_1, A_2, A_3 A1,A2,A3分别为1到1000中能被5,6或8整除的数集合,1到1000不能被5,6或8整除的数的个数为 ∣ A 1 ‾ ∩ A 2 ‾ ∩ A 3 ‾ ∣ |\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}| A1A2A3

【例】:字母M,A,T,H,I,S,F,U,N存在多少排列使得单词MATH, IS, FUN都不出现?

解:设 A 1 , A 2 , A 3 A_1, A_2, A_3 A1,A2,A3分别是MATH,IS,FUN出现的字母排列集合,则由题意要求 ∣ A 1 ‾ ∩ A 2 ‾ ∩ A 3 ‾ ∣ |\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}| A1A2A3

∣ S ∣ = 9 ! , ∣ A 1 ∣ = 6 ! , ∣ A 2 ∣ = 8 ! , ∣ A 3 ∣ = 7 ! , ∣ A 1 ∩ A 2 ∣ = 5 ! , ∣ A 1 ∩ A 3 ∣ = 3 ! , ∣ A 2 ∩ A 3 ∣ = 5 ! , ∣ A 1 ∩ A 2 ∩ A 3 ∣ = 3 ! |S| = 9!, |A_1| = 6!, |A_2| = 8!, |A_3|=7!, |A_1 \cap A_2|=5!, |A_1 \cap A_3|=3!, |A_2 \cap A_3| = 5!, |A_1\cap A_2 \cap A_3|=3! S=9!,A1=6!,A2=8!,A3=7!,A1A2=5!,A1A3=3!,A2A3=5!,A1A2A3=3!

由容斥原理

容斥原理特殊情况

集合包含的元素个数相等,那么 ∣ A 1 ‾ ∩ A 2 ‾ ∩ . . . ∩ A m ‾ ∣ = α 0 − ( m 1 ) α 1 + . . . + ( − 1 ) m α m |\overline{A_1} \cap \overline{A_2}\cap ...\cap \overline{A_m}| = \alpha_0 - \tbinom{m}{1}\alpha_1 + ... + (-1)^m\alpha_m A1A2...Am=α0(1m)α1+...+(1)mαm

【例】:从0到99999中有多少同时包含数字2,5和8的整数

解:设 A 1 , A 2 , A 3 A_1, A_2, A_3 A1,A2,A3分别为0-99999中不包含数字2,5和8的整数,则由题意要求 ∣ A 1 ‾ ∩ A 2 ‾ ∩ A 3 ‾ ∣ |\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}| A1A2A3

∣ S ∣ = 1 0 5 , ∣ A 1 ∣ = ∣ A 2 ∣ = ∣ A 3 ∣ = 9 5 , ∣ A i ∩ A j ∣ = 8 5 , ∣ A i ∩ A j ∩ A k ∣ = 7 5 |S| = 10^5, |A_1|=|A_2|=|A_3|=9^5, |A_i \cap A_j| = 8^5, |A_i\cap A_j \cap A_k| = 7^5 S=105,A1=A2=A3=95,AiAj=85,AiAjAk=75

∣ A 1 ‾ ∩ A 2 ‾ ∩ A 3 ‾ ∣ = 1 0 5 − 3 ∗ 9 5 + 3 ∗ 8 5 − 7 5 |\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}| = 10^5 - 3*9^5 + 3*8^5 - 7^5 A1A2A3=105395+38575

【例】: S = { 1 , 2 , . . . . , 8 } S = \left\{1,2,...., 8 \right\} S={1,2,....,8}的 排列中没有偶数在它的自然位置上的排列数

解:设 A 1 , A 2 , A 3 , A 4 A_1,A_2,A_3,A_4 A1,A2,A3,A4分别为 2 , 4 , 6 , 8 2,4,6,8 2,4,6,8在自然位置上的排列,则由题意要求 ∣ A 1 ‾ ∩ A 2 ‾ ∩ A 3 ‾ ∩ A 4 ‾ ∣ |\overline{A_1} \cap \overline{A_2} \cap \overline{A_3} \cap \overline{A_4}| A1A2A3A4

∣ S ∣ = 8 ! , ∣ A i ∣ = 7 ! , ∣ A i ∩ A j ∣ = 6 ! , ∣ A i ∩ A j ∩ A k ∣ = 5 ! , ∣ A i ∩ A j ∩ A k ∩ A l ∣ = 4 ! |S| = 8!, |A_i| = 7!, |A_i \cap A_j| = 6!, |A_i \cap A_j \cap A_k| = 5!, |A_i \cap A_j \cap A_k \cap A_l| = 4! S=8!,Ai=7!,AiAj=6!,AiAjAk=5!,AiAjAkAl=4!

∣ A 1 ‾ ∩ A 2 ‾ ∩ A 3 ‾ ∩ A 4 ‾ ∣ = 8 ! − 4 ∗ 7 ! + 6 ∗ 6 ! − 4 ∗ 5 ! + 4 ! |\overline{A_1} \cap \overline{A_2} \cap \overline{A_3} \cap \overline{A_4}| = 8!-4*7!+6*6!-4*5!+4! A1A2A3A4=8!47!+66!45+4

【例】: S = { 1 , 2 , . . . . , 8 } S = \left\{1,2,...., 8\right\} S={1,2,....,8}排列中至少有一个奇数在它的排列的位置上的排列数

解:设 A 1 , A 2 , A 3 , A 4 A_1,A_2,A_3,A_4 A1,A2,A3,A4分别为 , 1 , 3 , 5 , 7 ,1,3,5,7 ,1,3,5,7在自然位置上的排列,则由题意要求 ∣ A 1 ∪ A 2 ∪ A 3 ∪ A 4 ∣ |A_1 \cup A_2 \cup A_3 \cup A_4| A1A2A3A4

∣ A 1 ∪ A 2 ∪ A 3 ∪ A 4 ∣ = 4 ∗ 7 ! − 6 ∗ 6 ! + 4 ∗ 5 ! − 4 ! |A_1 \cup A_2 \cup A_3 \cup A_4| = 4*7!-6*6!+4*5!-4! A1A2A3A4=47!66!+454

6.2 带重复的组合

n个不同元素的集合的r子集的数目为 ( n r ) \tbinom{n}{r} (rn)

令S是多重集,包含k个不同的元素,每个元素都有无限重复次数,S的r子集 ( r + k − 1 r ) \tbinom{r+k-1}{r} (rr+k1)

容斥原理要解决如果不是无限次重复怎么办

容斥原理在多重集组合的应用

【例】: S = { 3 a , 4 b , 5 c } S=\left\{ 3a, 4b, 5c\right\} S={3a,4b,5c}的10子集个数

解:令多重集 T ∗ = { ∞ a , ∞ b , ∞ c } T^* = \left\{\infty a, \infty b, \infty c \right\} T={a,b,c}的所有10子集的集合为S,设 A 1 A_1 A1是S中包含多于3个a的10子集的集合, A 2 A_2 A2是S中包含多于4个b的10子集的集合, A 3 A_3 A3是S中包含对于5个c的10子集的集合。则S的10组合数等于 ∣ A 1 ‾ ∩ A 2 ‾ ∩ A 3 ‾ ∣ |\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}| A1A2A3

∣ S ∣ = ( 12 2 ) , ∣ A 1 ∣ = ( 8 2 ) , ∣ A 2 ∣ = ( 7 2 ) , ∣ A 3 ∣ = ( 6 2 ) , ∣ A 1 ∩ A 2 ∣ = ( 3 2 ) , ∣ A 1 ∩ A 3 ∣ = ( 2 2 ) |S| = \tbinom{12}{2}, |A_1| = \tbinom{8}{2}, |A_2| = \tbinom{7}{2}, |A_3| = \tbinom{6}{2}, |A_1\cap A_2| = \tbinom{3}{2}, |A_1\cap A_3| = \tbinom{2}{2} S=(212),A1=(28),A2=(27),A3=(26),A1A2=(23),A1A3=(22)

∣ A 1 ‾ ∩ A 2 ‾ ∩ A 3 ‾ ∣ = 66 − ( 28 + 21 + 15 ) + 3 + 1 = 6 |\overline{A_1}\cap \overline{A_2} \cap \overline{A_3}| = 66-(28+21+15)+3+1=6 A1A2A3=66(28+21+15)+3+1=6

【例】:满足 1 ≤ x 1 ≤ 5 , − 2 ≤ x 2 ≤ 4 , 0 ≤ x 3 ≤ 5 , 3 ≤ x 4 ≤ 9 1\le x_1 \le 5, -2\le x_2 \le 4, 0\le x_3 \le 5, 3 \le x_4 \le 9 1x15,2x24,0x35,3x49的方程 x 1 + x 2 + x 3 + x 4 = 18 x_1 + x_2 + x_3 + x_4 = 18 x1+x2+x3+x4=18的整数解个数

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值