第6章 容斥原理

第6章 容斥原理

6.1 容斥原理

用于重叠集合的并集计数

也用于重叠集合的补集的交集计数

用韦恩图想比较直观

【例】:求1到1000不能被5,6或8整除的数的个数

解:设 A 1 , A 2 , A 3 A_1, A_2, A_3 A1,A2,A3分别为1到1000中能被5,6或8整除的数集合,1到1000不能被5,6或8整除的数的个数为 ∣ A 1 ‾ ∩ A 2 ‾ ∩ A 3 ‾ ∣ |\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}| A1A2A3

【例】:字母M,A,T,H,I,S,F,U,N存在多少排列使得单词MATH, IS, FUN都不出现?

解:设 A 1 , A 2 , A 3 A_1, A_2, A_3 A1,A2,A3分别是MATH,IS,FUN出现的字母排列集合,则由题意要求 ∣ A 1 ‾ ∩ A 2 ‾ ∩ A 3 ‾ ∣ |\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}| A1A2A3

∣ S ∣ = 9 ! , ∣ A 1 ∣ = 6 ! , ∣ A 2 ∣ = 8 ! , ∣ A 3 ∣ = 7 ! , ∣ A 1 ∩ A 2 ∣ = 5 ! , ∣ A 1 ∩ A 3 ∣ = 3 ! , ∣ A 2 ∩ A 3 ∣ = 5 ! , ∣ A 1 ∩ A 2 ∩ A 3 ∣ = 3 ! |S| = 9!, |A_1| = 6!, |A_2| = 8!, |A_3|=7!, |A_1 \cap A_2|=5!, |A_1 \cap A_3|=3!, |A_2 \cap A_3| = 5!, |A_1\cap A_2 \cap A_3|=3! S=9!,A1=6!,A2=8!,A3=7!,A1A2=5!,A1A3=3!,A2A3=5!,A1A2A3=3!

由容斥原理

容斥原理特殊情况

集合包含的元素个数相等,那么 ∣ A 1 ‾ ∩ A 2 ‾ ∩ . . . ∩ A m ‾ ∣ = α 0 − ( m 1 ) α 1 + . . . + ( − 1 ) m α m |\overline{A_1} \cap \overline{A_2}\cap ...\cap \overline{A_m}| = \alpha_0 - \tbinom{m}{1}\alpha_1 + ... + (-1)^m\alpha_m A1A2...Am=α0(1m)α1+...+(1)mαm

【例】:从0到99999中有多少同时包含数字2,5和8的整数

解:设 A 1 , A 2 , A 3 A_1, A_2, A_3 A1,A2,A3分别为0-99999中不包含数字2,5和8的整数,则由题意要求 ∣ A 1 ‾ ∩ A 2 ‾ ∩ A 3 ‾ ∣ |\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}| A1A2A3

∣ S ∣ = 1 0 5 , ∣ A 1 ∣ = ∣ A 2 ∣ = ∣ A 3 ∣ = 9 5 , ∣ A i ∩ A j ∣ = 8 5 , ∣ A i ∩ A j ∩ A k ∣ = 7 5 |S| = 10^5, |A_1|=|A_2|=|A_3|=9^5, |A_i \cap A_j| = 8^5, |A_i\cap A_j \cap A_k| = 7^5 S=105,A1=A2=A3=95,AiAj=85,AiAjAk=75

∣ A 1 ‾ ∩ A 2 ‾ ∩ A 3 ‾ ∣ = 1 0 5 − 3 ∗ 9 5 + 3 ∗ 8 5 − 7 5 |\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}| = 10^5 - 3*9^5 + 3*8^5 - 7^5 A1A2A3=105395+38575

【例】: S = { 1 , 2 , . . . . , 8 } S = \left\{1,2,...., 8 \right\} S={1,2,....,8}的 排列中没有偶数在它的自然位置上的排列数

解:设 A 1 , A 2 , A 3 , A 4 A_1,A_2,A_3,A_4 A1,A2,A3,A4分别为 2 , 4 , 6 , 8 2,4,6,8 2,4,6,8在自然位置上的排列,则由题意要求 ∣ A 1 ‾ ∩ A 2 ‾ ∩ A 3 ‾ ∩ A 4 ‾ ∣ |\overline{A_1} \cap \overline{A_2} \cap \overline{A_3} \cap \overline{A_4}| A1A2A3A4

∣ S ∣ = 8 ! , ∣ A i ∣ = 7 ! , ∣ A i ∩ A j ∣ = 6 ! , ∣ A i ∩ A j ∩ A k ∣ = 5 ! , ∣ A i ∩ A j ∩ A k ∩ A l ∣ = 4 ! |S| = 8!, |A_i| = 7!, |A_i \cap A_j| = 6!, |A_i \cap A_j \cap A_k| = 5!, |A_i \cap A_j \cap A_k \cap A_l| = 4! S=8!,Ai=7!,AiAj=6!,AiAjAk=5!,AiAjAkAl=4!

∣ A 1 ‾ ∩ A 2 ‾ ∩ A 3 ‾ ∩ A 4 ‾ ∣ = 8 ! − 4 ∗ 7 ! + 6 ∗ 6 ! − 4 ∗ 5 ! + 4 ! |\overline{A_1} \cap \overline{A_2} \cap \overline{A_3} \cap \overline{A_4}| = 8!-4*7!+6*6!-4*5!+4! A1A2A3A4=8!47!+66!45+4

【例】: S = { 1 , 2 , . . . . , 8 } S = \left\{1,2,...., 8\right\} S={1,2,....,8}排列中至少有一个奇数在它的排列的位置上的排列数

解:设 A 1 , A 2 , A 3 , A 4 A_1,A_2,A_3,A_4 A1,A2,A3,A4分别为 , 1 , 3 , 5 , 7 ,1,3,5,7 ,1,3,5,7在自然位置上的排列,则由题意要求 ∣ A 1 ∪ A 2 ∪ A 3 ∪ A 4 ∣ |A_1 \cup A_2 \cup A_3 \cup A_4| A1A2A3A4

∣ A 1 ∪ A 2 ∪ A 3 ∪ A 4 ∣ = 4 ∗ 7 ! − 6 ∗ 6 ! + 4 ∗ 5 ! − 4 ! |A_1 \cup A_2 \cup A_3 \cup A_4| = 4*7!-6*6!+4*5!-4! A1A2A3A4=47!66!+454

6.2 带重复的组合

n个不同元素的集合的r子集的数目为 ( n r ) \tbinom{n}{r} (rn)

令S是多重集,包含k个不同的元素,每个元素都有无限重复次数,S的r子集 ( r + k − 1 r ) \tbinom{r+k-1}{r} (rr+k1)

容斥原理要解决如果不是无限次重复怎么办

容斥原理在多重集组合的应用

【例】: S = { 3 a , 4 b , 5 c } S=\left\{ 3a, 4b, 5c\right\} S={3a,4b,5c}的10子集个数

解:令多重集 T ∗ = { ∞ a , ∞ b , ∞ c } T^* = \left\{\infty a, \infty b, \infty c \right\} T={a,b,c}的所有10子集的集合为S,设 A 1 A_1 A1是S中包含多于3个a的10子集的集合, A 2 A_2 A2是S中包含多于4个b的10子集的集合, A 3 A_3 A3是S中包含对于5个c的10子集的集合。则S的10组合数等于 ∣ A 1 ‾ ∩ A 2 ‾ ∩ A 3 ‾ ∣ |\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}| A1A2A3

∣ S ∣ = ( 12 2 ) , ∣ A 1 ∣ = ( 8 2 ) , ∣ A 2 ∣ = ( 7 2 ) , ∣ A 3 ∣ = ( 6 2 ) , ∣ A 1 ∩ A 2 ∣ = ( 3 2 ) , ∣ A 1 ∩ A 3 ∣ = ( 2 2 ) |S| = \tbinom{12}{2}, |A_1| = \tbinom{8}{2}, |A_2| = \tbinom{7}{2}, |A_3| = \tbinom{6}{2}, |A_1\cap A_2| = \tbinom{3}{2}, |A_1\cap A_3| = \tbinom{2}{2} S=(212),A1=(28),A2=(27),A3=(26),A1A2=(23),A1A3=(22)

∣ A 1 ‾ ∩ A 2 ‾ ∩ A 3 ‾ ∣ = 66 − ( 28 + 21 + 15 ) + 3 + 1 = 6 |\overline{A_1}\cap \overline{A_2} \cap \overline{A_3}| = 66-(28+21+15)+3+1=6 A1A2A3=66(28+21+15)+3+1=6

【例】:满足 1 ≤ x 1 ≤ 5 , − 2 ≤ x 2 ≤ 4 , 0 ≤ x 3 ≤ 5 , 3 ≤ x 4 ≤ 9 1\le x_1 \le 5, -2\le x_2 \le 4, 0\le x_3 \le 5, 3 \le x_4 \le 9 1x15,2x24,0x35,3x49的方程 x 1 + x 2 + x 3 + x 4 = 18 x_1 + x_2 + x_3 + x_4 = 18 x1+x2+x3+x4=18的整数解个数

本研究利用Sen+MK方法分析了特定区域内的ET(蒸散发)趋势,重点评估了使用遥感数据的ET空间变化。该方法结合了Sen斜率估算器和Mann-Kendall(MK)检验,为评估长期趋势提供了稳健的框架,同时考虑了时间变化和统计显著性。 主要过程与结果: 1.ET趋势可视化:研究利用ET数据,通过ET-MK和ET趋势图展示了蒸散发在不同区域的空间和时间变化。这些图通过颜色渐变表示不同的ET水平及其趋势。 2.Mann-Kendall检验:应用MK检验来评估ET趋势的统计显著性。检验结果以二元分类图呈现,标明ET变化的显著性,帮助识别出有显著变化的区域。 3.重分类结果:通过重分类处理,将区域根据ET变化的显著性进行分类,从而聚焦于具有显著变化的区域。这一过程确保分析集中在具有实际意义的发现上。 4.最终输出:最终结果以栅格图和png图的形式呈现,支持各种应用,包括政策规划、水资源管理和土地利用变化分析,这些都是基于详细的时空分析。 ------------------------------------------------------------------- 文件夹构造: data文件夹:原始数据,支持分析的基础数据(MOD16A2H ET数据 宁夏部分)。 results文件夹:分析结果与可视化,展示研究成果。 Sen+MK_optimized.py:主分析脚本,适合批量数据处理和自动化分析。 Sen+MK.ipynb:Jupyter Notebook,复现可视化地图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值