联邦学习全局模型融合

1. Ensemble Distillation for Robust Model Fusion in Federated Learning

NeurIPS 2020 —— FedDF
Tao Lin, Lingjing Kong, Sebastian U.Stich, Martin Jaggi

1.1 拟解决的问题

在这里插入图片描述
Toy Example: 在2个客户端单独训练的时候,都可以获得清晰的决策边界。直接用模型参数加权融合的方法在数据异质性存在情况下,决策边界不清晰,影响模型性能;用集成学习方法虽然可以获得清晰的决策边界,但是在客户端很多时模型规模过大。

1.2 采取的方法

算法伪代码
利用参与联邦学习训练的local model进行aggregation初始化global model,然后再在公共数据集d上进行知识蒸馏。具体方法为计算 S t S_t St 个local model输出向量的均值,计算其与global model输出向量的KL散度,从而拉近global model与ensemble model的距离。

1.3 启发

这篇文章的toy example举得很好,将注意力关注到了local model 和global model 的决策边界问题。当然可以发现这个例子主要是体现了分类器的区别(3层MLP模型),所以在存在卷积层特征提取器等的网络中,是否也存在蒸馏后会好于直接融合模型参数的情况?
同时,蒸馏的效果也非常依赖于公开数据集的选择,如果公共数据集是有偏的,未必能够做出比较好的效果。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值