7.3 容斥原理与鸽巢原理

第七章 组合数学

全文均为手敲,如果发现有误,请于评论区交流讨论留言,作者会及时修改

7.3 容斥原理与鸽巢原理

  1. 鸽巢原理

    n + 1 n+1 n+1个物体放入 n n n个盒子,则至少有一个盒子包含至少两个物体。

  2. 鸽巢原理的加强形式

    q 1 + q 2 + ⋯ + q n − n + 1 q_1+q_2+\cdots+q_n-n+1 q1+q2++qnn+1个物体放进 n n n个盒子里,则或者第 1 1 1个盒子至少含 q 1 q_1 q1个物体,或者第 2 2 2个盒子至少含 q 2 q_2 q2个物体, ⋯ \cdots ,或者第 n n n个盒子至少含 q n q_n qn个物体。

  3. 鸽巢原理的推广

    n ( r − 1 ) + 1 n(r-1)+1 n(r1)+1个物体放入 n n n个盒子,则至少有一个盒子包含至少 r r r个物体。

  4. 平均值原理

    n n n个非负整数的平均数大于 r − 1 r-1 r1,则至少有一个非负整数大于等于 r r r

  5. R a m s e y Ramsey Ramsey问题

    对完全图 K r K_r Kr进行红蓝二染色,对任何染色都存在红色 K m K_m Km或蓝色 K N K_N KN的最小图的阶 a m i n a_{min} amin记作 r ( m , n ) r(m,n) r(m,n),且满足以下性质

    ( 1 ) r ( m , n ) = r ( n , m ) ( 2 ) r ( m , 2 ) = m , r ( 3 , 3 ) = 6 , r ( 3 , 4 ) = 9 , r ( 3 , 3 , 3 ) = 17 ( 3 ) 对于 m , n ≥ 2 , 有 r ( m , n ) ≤ r ( m − 1 , n ) + r ( m , n − 1 ) \begin{aligned} &(1)r(m,n)=r(n,m)\\ &(2)r(m,2)=m,r(3,3)=6,r(3,4)=9,r(3,3,3)=17\\ &(3)对于m,n\ge 2,有r(m,n)\le r(m-1,n)+r(m,n-1) \end{aligned} (1)r(m,n)=r(n,m)(2)r(m,2)=m,r(3,3)=6,r(3,4)=9,r(3,3,3)=17(3)对于m,n2,r(m,n)r(m1,n)+r(m,n1)

  6. 容斥原理

    ∣ A ∪ B ∣ = ∣ A ∣ + ∣ B ∣ − ∣ A ∩ B ∣ |A\cup B|=|A|+|B|-|A\cap B| AB=A+BAB

    ∣ A ∪ B ∪ C ∣ = ∣ A ∣ + ∣ B ∣ + ∣ C ∣ − ∣ A ∩ B ∣ − ∣ A ∩ C ∣ − ∣ B ∩ C ∣ + ∣ A ∩ B ∩ C ∣ |A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C| ABC=A+B+CABACBC+ABC

    以上规律可以推广到 n n n个集合

    以及可以考虑德摩根律求解 ∣ A ∩ B ∩ C ∣ |A\cap B\cap C| ABC

  7. 错位排列

    D n = n ! ∑ k = 0 n ( − 1 ) k k ! D_n=n!\sum_{k=0}^n\frac{(-1)^k}{k!} Dn=n!k=0nk!(1)k

    错位排列满足一定的递推关系

    { D n = ( n − 1 ) ( D n − 1 + D n − 2 ) ( n ≥ 3 ) D n = n D n − 1 + ( − 1 ) n D 1 = 0 , D 2 = 1 \begin{cases} &D_n=(n-1)(D_{n-1}+D_{n-2})(n\ge 3)\\ &D_n=nD_{n-1}+(-1)^n\\ &D_1=0,D_2=1 \end{cases} Dn=(n1)(Dn1+Dn2)(n3)Dn=nDn1+(1)nD1=0,D2=1

  8. 非攻击型车的禁区排列数

    r i r_i ri为有 i i i个棋子布置到禁区的方案数,则放置 n n n个相同的非攻击性车到 n × n n\times n n×n棋盘上的方案数为

    n ! − r 1 ( n − 1 ) ! + r 2 ( n − 2 ) ! − ⋯ + ( − 1 ) n r n n!-r_1(n-1)!+r_2(n-2)!-\cdots+(-1)^nr_n n!r1(n1)!+r2(n2)!+(1)nrn

    如果非攻击性车是可区分的,还应乘对应的排列数。

  9. 容斥原理的一般公式

    p k p_k pk为至少有 k k k种性质的元素个数, q k q_k qk为恰有 k k k种性质的元素个数,则

    q k = p k − ( k + 1 1 ) p k + 1 + ( k + 2 2 ) p k + 2 + ⋯ + ( − 1 ) n − k ( n n − k ) p n q_k=p_k-\begin{pmatrix}k+1\\1\end{pmatrix}p_{k+1}+\begin{pmatrix}k+2\\2\end{pmatrix}p_{k+2}+\cdots+(-1)^{n-k}\begin{pmatrix}n\\n-k\end{pmatrix}p_n qk=pk(k+11)pk+1+(k+22)pk+2++(1)nk(nnk)pn

  10. Q n Q_n Qn { 1 , ⋯   , n } \{1,\cdots,n\} {1,,n}中不出现 12 , 23 , ⋯   , ( n − 1 ) n 12,23,\cdots,(n-1)n 12,23,,(n1)n这些模式的排列数,则

    Q n = n ! − ( n − 1 q ) ( n − 1 ) ! + ( n − 2 2 ) ( n − 2 ) ! + ⋯ + ( − 1 ) n − 1 ( n − 1 n − 1 ) 1 ! Q_n=n!-\begin{pmatrix}n-1\\q\end{pmatrix}(n-1)!+\begin{pmatrix}n-2\\2\end{pmatrix}(n-2)!+\cdots+(-1)^{n-1}\begin{pmatrix}n-1\\n-1\end{pmatrix}1! Qn=n!(n1q)(n1)!+(n22)(n2)!++(1)n1(n1n1)1!

    Q n = D n + D n − 1 Q_n=D_n+D_{n-1} Qn=Dn+Dn1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值