一、什么是单层感知机,什么是多层感知机
单层感知机和多层感知机是两种不同类型的神经网络模型,具体介绍如下:
- 单层感知机(Single Layer Perceptron,SLP):
- 单层感知机是机器学习中最为基础的方法之一,也可以认为是一种最为简单的神经网络。其模型结构与逻辑回归是一致的,都是多个输入,乘以权值求和再加上偏置,再经过激活函数得到输出。
- 在单层感知机中,激活函数为sign函数,与逻辑回归中常用的sigmoid函数不同。sign函数直接根据输入的加权和进行二分类判断,不像sigmoid函数那样以一定概率对结果进行输出。
- 由于单层感知机使用sign函数,结构较为简单,泛化能力较差。其损失函数是基于误分类点到超平面的距离总和来构造的。
- 多层感知机(Multilayer Perceptron,MLP):
- 多层感知机是一种基于前馈神经网络的深度学习模型,由多个神经元层组成,其中每个神经元层与前一层全连接。
- 多层感知机通常包括输入层、隐藏层和输出层。输入层负责接收外部输入的数据,隐藏层通过非线性变换将输入转化为有意义的特征表示,输出层则根据隐藏层的输出进行分类或回归等任务。
- 多层感知机可以用于解决分类、回归和聚类等各种机器学习问题。通过不断迭代训练,多层感知机可以自动学习到输入特征之间的复杂关系,并对新的数据进行预测。
总的来说,单层感知机和多层感知机在结构、功能和应用上都有所不同。单层感知机结构简单,泛化能力较差,适用于简单的二分类问题;而多层感知机结构复杂,泛化能力强,可以应用于各种复杂的机器学习问题。
二、卷积操作
1.CNN的卷积核通道数 = 卷积输入层的通道数;CNN的卷积输出层通道数 = 卷积核的个数
三、为什么不同的机器学习领域都可以使用CNN、CNN解决了这些领域的哪些共性问题?他是如何解决的?
CNN的关键操作是卷积运算,卷积运算能够将输入层进行局部链接,可以获取整个输入的局部特征信息或者说是每个输入特征的组合特征。
所以CNN的本质是完成了特征提取或者说是对原始特征的特征组合工作,从而增加模型的表达能力。
不同领域的机器学习都是通过数据的特征进行建模,从而解决该领域的问题。故CNN解决了不同领域的特征提取问题。
所用的方法是基于局部连接/权值共享/池化操作/多层次结构。
四、什么样的数据集不适合深度学习?
1.数据集太小
2.数据集没有局部相关特性
深度学习模型在训练过程中会尝试寻找数据中的局部模式或特征,并利用这些特征进行预测或分类。但是,如果数据集中的特征元素之间没有明显的局部相关性,即它们的组合和排列顺序对结果没有显著影响,那么深度学习模型就很难学习到有效的特征表示,从而导致模型的性能下降。
3.高维稀疏数据
4.大量噪声数据集
5.缺乏明确特征