矩阵分析与应用(一)

1.1.1 向量

均值向量

互相关矩阵

若互相关矩阵等于零矩阵,两个随机变量正交。

互协方差矩阵

互协方差函数越大,则两个随机信号的相关程度越强;反之,相关程度越弱。

若互协方差矩阵等于零矩阵,两个随机变量统计不相关。

对于分别具有零均值的两个随机变量,互协方差矩阵等于互相关矩阵,它们之间的统计不相关与正交是等价的。

相关函数 

如果相关函数越接近0,两个随机变量的相似度越弱;如果相关函数越接近于1,则相似度越强。

1.1.2 矩阵的基本运算

复共轭矩阵

共轭转置又叫Hermitian伴随、Hermitian转置或Hermitian共轭。

加法交换律 A+B=B=A

加法结合律 (A+B)+C=A+(B+C)

乘法结合律 A(BC)=(AB)C

乘法左分配律 (A+B)C=AC+BC

乘法右分配律 A(B+C)=AB+AC

1.1.3 非奇异矩阵

(1) 一个n×n矩阵A是非奇异的,当且仅当Ax=0只有零解x=0

(2) 一个n×n矩阵A是非奇异的,当且仅当它的n个列向量线性无关。

1.4.1 向量的内积与范数

内积

外积(叉积) 

内积公理

范数公理

范数的一般性质

常用的向量范数

相似度

Euclidean距离(Nearest Neighbor Classification)

Mahalanobis距离

1.6.1 矩阵的二次型

1.6.2 矩阵的迹

n×n矩阵A的对角元素之和称为A的迹,记作tr(A)

关于迹的等式

关于迹的不等式

 

矩阵分析与应用 张贤达著

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值