动态规划(2): 最长公共子序列(LCS)问题

0.前置定义

0.1 子序列

一个给定序列的子序列,就是将给定序列中零个或多个元素去掉之后得到的结果.
例: X = <A, B, C, B, D, B>
Z = (B, C, D, B) 是X的子序列
W = (B, D, A) 不是X的子序列

0.2 公共子序列

给定两个序列X和Y, 如果Z既是X的子序列,又是Y的子序列,称它是X和Y的公共子序列.

0.3 前缀,第i前缀

给定一个序列X = <x1, x2, …, xm>, X的第i前缀是一个序列Xi = <x1, x2, …, xi>, 其中i = 0, 1, …, m.

1. 问题描述

输入: 序列X = <x1, x2, …, xm>, Y = <y1, y2, …, yn>;
输出: X和Y的最长公共子序列(LCS)长度.

2. 问题求解

2.1 最优解的结构

先说结论: 两个序列的LCS与它们的前缀的LCS有关
具体: 设X = <x1, x2, …, xm>, Y = <y1, y2, …, yn> 是两个序列, Z = <z1, z2, …, zk>是X与Y的LCS,我们有:

  1. 若 xm = yn, 则zk = xm = yn 且 Zk-1 是 Xm-1 和 Yn-1 的LCS
  2. 若 xm ≠ yn, 且zk ≠ xm, 则 Z 是 Xm-1 和 Y 的LCS
  3. 若 xm ≠ yn, 且zk ≠ yn, 则 Z 是 X 和 Ym-1 的LCS

即:

  1. L C S X Y = L C S X m − 1 Y n − 1 + < X m = Y n > LCS_{XY} = LCS_{X_{m-1}Y_{n-1}} + <X_m=Y_n> LCSXY=LCSXm1Yn1+<Xm=Yn>(xm = yn)
  2. L C S X Y = L C S X m − 1 Y LCS_{XY} = LCS_{X_{m-1}Y} LCSXY
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最长公共子序列问题(Longest Common Subsequence,简称LCS)是指在两个序列中找到一个最长的公共子序列,其中一个序列的所有元素按原序列中出现的顺序排列,而另一个序列中的元素则不要求按原序列中出现的顺序排列。 动态规划方法可以很好地解决LCS问题。设A和B是两个序列,LCS(A,B)表示A和B的最长公共子序列。则可以设计如下的状态转移方程: 当A和B的末尾元素相同时,LCS(A,B) = LCS(A-1,B-1) + 1。 当A和B的末尾元素不同时,LCS(A,B) = max(LCS(A-1,B), LCS(A,B-1))。 其中,LCS(A-1,B-1)表示A和B的末尾元素相同时的情况,LCS(A-1,B)表示A的最后一个元素不在最长公共子序列中,而B中的最后一个元素在最长公共子序列中的情况,LCS(A,B-1)表示B的最后一个元素不在最长公共子序列中,而A中的最后一个元素在最长公共子序列中的情况。 根据这个状态转移方程,可以使用动态规划算法来求解LCS问题。具体方法是,构建一个二维数组dp,其中dp[i][j]表示A前i个元素和B前j个元素的LCS。初始化dp[0][j]和dp[i][0]为0,然后按照上述状态转移方程进行递推,最终得到dp[lenA][lenB],其中lenA和lenB分别表示A和B的长度。dp[lenA][lenB]即为A和B的最长公共子序列的长度。要找到具体的最长公共子序列,可以从dp[lenA][lenB]开始,按照状态转移方程反向推导出每个元素,即可得到最长公共子序列LCS问题动态规划算法的经典应用之一,时间复杂度为O(n*m),其中n和m分别为A和B的长度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值