克鲁斯卡尔算法求图的最小生成树

在这里插入图片描述克鲁斯卡尔算法就是:先将图中所有的边的权值,从小到大排序,然后,在不构成回路的前提下,依次选择最短的路径的边,如果加入某个边构成回路,则这条边舍弃,再接着取下一条边,直到连接所有顶点
代码:

public class KruskalCase {
    private int edgeNum;//边的个数
    private char[] vertexs;//顶点数组
    private int[][] weight;//邻接矩阵
    //用int类型的最大值表示两点之间不连通
    private static final int INF = Integer.MAX_VALUE;

    public static void main(String[] args) {
        char[] vertexs  = {'A','B','C','D','E','F','G'};
        int[][] weight = {
                {0, 12, INF, INF, INF, 16, 14},
                {12, 0, 10, INF, INF, 7, INF},
                {INF, 10, 0, 3, 5, 6, INF},
                {INF, INF, 3, 0, 4, INF, INF},
                {INF, INF, 5, 4, 0, 2, 8},
                {16, 7, 6, INF, 2, 0, 9},
                {14, INF, INF, INF, 8, 9, 0},
        };

        KruskalCase kruskalCase = new KruskalCase(vertexs, weight);
        kruskalCase.print();
        kruskalCase.kruskal();

    }

    public void kruskal(){
        int index = 0;
        //保存最小生成树中每个顶点的终点
        int[] ends = new int[edgeNum];
        //创建结果数组保存最后的最小生成树
        EData[] tree = new EData[edgeNum];
        //获取所有的边的集合
        EData[] eData = getData();
        //排序
        sort(eData);
        //遍历eData数组,将边添加到最小生成树中。看是否生成回路,如果没有,就加入tree数组
        for(int i = 0;i<edgeNum;i++){
            //获取边的一个顶点
            int p1 = getPosition(eData[i].start);
            //获取边的另外一个顶点
            int p2 = getPosition(eData[i].end);
            //分别获取两个顶点的终点
            int m = getEnd(ends,p1);
            int n = getEnd(ends,p2);
            //不等于说明不构成回路
            if(m!=n){
                ends[m] = n;
                tree[index++] = eData[i];
            }
        }

        //输出tree
        System.out.println("最小生成树为"+Arrays.toString(tree));

    }



    public KruskalCase(char[] vertexs,int[][] weight){
        //初始化顶点数
        int vlen = vertexs.length;
        //初始化顶点
        this.vertexs = new char[vlen];
        //初始化矩阵
        this.weight = new int[vlen][vlen];
        //复制拷贝的方式
        for(int i = 0;i<vlen;i++){
            this.vertexs[i] = vertexs[i];
            for(int j = 0;j<vlen;j++){
                this.weight[i][j] = weight[i][j];
            }
        }
        //统计边
        for(int i = 0;i<vlen;i++){
            for(int j = i+1;j<vlen;j++){
                if(this.weight[i][j]!=INF && this.weight[i][j]!=0){
                    edgeNum++;
                }
            }
        }
    }


    public void print(){
        System.out.println("邻接矩阵为:");
        for(int[] link:weight){
            System.out.println(Arrays.toString(link));
        }
    }

    /**
     * 对边进行排序  插入排序
     * @param eDatas
     */
    public void sort (EData[] eDatas){
        EData temp = null;
        int j;
        for(int i = 1;i<eDatas.length;i++){
            temp = eDatas[i];
            j = i-1;
            while (j>=0 && temp.weight<eDatas[j].weight){
                eDatas[j+1] = eDatas[j];
                j--;
            }
            eDatas[j+1] = temp;
        }
    }

    //根据传入的顶点返回顶点下标
    private int getPosition(char ch){
        for(int i = 0;i<vertexs.length;i++){
            if(vertexs[i] == ch){
                return i;
            }
        }
        return -1;
    }

    //获取图中边的数组
    private EData[] getData(){
        int index = 0;
        EData[] eData = new EData[edgeNum];
        for(int i = 0;i<vertexs.length;i++){
            for(int j = i+1;j<vertexs.length;j++){
                if(this.weight[i][j]!=0 && this.weight[i][j]!=INF){
                    eData[index] = new EData(vertexs[i],vertexs[j],weight[i][j]);
                    index++;
                }
            }
        }
        return eData;
    }

    /**
     * 获取下标为i的顶点的终点
     * @param ends  记录了各个顶点对应的终点是哪个,ends数组是在遍历过程中逐步形成的
     * @param i     表示传入的顶点下标
     * @return  返回的就是下标为i对应的顶点的终点的下标
     */
    private int getEnd(int[] ends,int i){
        while(ends[i] != 0){
            i = ends[i];
        }
        return i;
    }
}

//创建一个表示边的对象类
class EData{
    char start;//边的一个点
    char end;//边的另外一个点
    int weight;//权值
    //构造器
    public EData(char start, char end, int weight) {
        this.start = start;
        this.end = end;
        this.weight = weight;
    }

    @Override
    public String toString() {
        return "EData{" +
                "start=" + start +
                ", end=" + end +
                ", weight=" + weight +
                '}';
    }
}
发布了16 篇原创文章 · 获赞 0 · 访问量 217
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览