Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he’s earned fair and square, he has to open the lock.
The combination lock is represented by n rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that?
Input
The first line contains a single integer n (1 ≤ n ≤ 1000) — the number of disks on the combination lock.
The second line contains a string of n digits — the original state of the disks.
The third line contains a string of n digits — Scrooge McDuck’s combination that opens the lock.
Output
Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock.
Examples
inputCopy
5
82195
64723
outputCopy
13
Note
In the sample he needs 13 moves:
1 disk:
2 disk:
3 disk:
4 disk:
5 disk:
题意很好理解,就是那种转动的密码锁,问你最少几次能够打开,其实也就是看每一位两个数的差的绝对值和5的关系,如果小于5就取这个差,如过大于5就取10-这个差。另外需要注意的就是这个题是一整个密码串一起读,中间没有空格,又因为最大是1000位,所以采用字符数组来存储就行
#include<cstdio>
#include<iostream>
#include<cmath>
#define MAX 1005
using namespace std;
int subb(char a,char b)
{
return abs(a-b); //abs是求绝对值的函数,头文件是math.h
}
int main()
{
char a[MAX],b[MAX];
int n,i;
while(scanf("%d",&n)!=EOF)
{
int sum=0;
scanf("%s",a);
scanf("%s",b);
for(i=0;i<n;i++)
{
int x=subb(a[i],b[i]);
if(x<=5)
sum+=x;
else
sum+=10-x;
}
cout<<sum<<endl;
}
return 0;
}