字节跳动春招研发部分编程题--雀魂启动

文章讲述了小包简化雀魂麻将规则后的新玩法,玩家需在特定条件下和牌,涉及14张牌中的雀头、顺子和刻子。给出了算法实现,用于判断剩余23张牌中,取哪种数字牌可与13张牌和牌。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小包最近迷上了一款叫做雀魂的麻将游戏,但是这个游戏规则太复杂,小包玩了几个月了还是输多赢少。

于是生气的小包根据游戏简化了一下规则发明了一种新的麻将,只留下一种花色,并且去除了一些特殊和牌方式(例如七对子等),具体的规则如下:

  1. 总共有36张牌,每张牌是1~9。每个数字4张牌。
  2. 你手里有其中的14张牌,如果这14张牌满足如下条件,即算作和牌
  • 14张牌中有2张相同数字的牌,称为雀头。
  • 除去上述2张牌,剩下12张牌可以组成4个顺子或刻子。顺子的意思是递增的连续3个数字牌(例如234,567等),刻子的意思是相同数字的3个数字牌(例如111,777)

例如:

1 1 1 2 2 2 6 6 6 7 7 7 9 9 可以组成1,2,6,7的4个刻子和9的雀头,可以和牌

1 1 1 1 2 2 3 3 5 6 7 7 8 9 用1做雀头,组123,123,567,789的四个顺子,可以和牌

1 1 1 2 2 2 3 3 3 5 6 7 7 9 无论用1 2 3 7哪个做雀头,都无法组成和牌的条件。

现在,小包从36张牌中抽取了13张牌,他想知道在剩下的23张牌中,再取一张牌,取到哪几种数字牌可以和牌。

时间限制:C/C++ 1秒,其他语言2秒

空间限制:C/C++ 32M,其他语言64M

输入描述:

输入只有一行,包含13个数字,用空格分隔,每个数字在1~9之间,数据保证同种数字最多出现4次。

输出描述:

输出同样是一行,包含1个或以上的数字。代表他再取到哪些牌可以和牌。若满足条件的有多种牌,请按从小到大的顺序输出。若没有满足条件的牌,请输出一个数字0

示例1

输入例子:

1 1 1 2 2 2 5 5 5 6 6 6 9

输出例子:

9

例子说明:

可以组成1,2,6,7的4个刻子和9的雀头

示例2

输入例子:

1 1 1 1 2 2 3 3 5 6 7 8 9

输出例子:

4 7

例子说明:

用1做雀头,组123,123,567或456,789的四个顺子

示例3

输入例子:

1 1 1 2 2 2 3 3 3 5 7 7 9

输出例子:

0

例子说明:

来任何牌都无法和牌

这道题可以通过遍历每一种情况来解决。对于每一种情况,我们可以枚举最后一张牌的所有可能,然后判断是否满足和牌条件。

具体做法如下:

  1. 对于输入的13张牌,统计每种数字的出现次数。
  2. 对于每一种数字,判断其出现次数是否满足以下条件:
    • 出现次数最多只能为1,即最多只能有一张这种数字的牌。
    • 至少要有两张牌是不同的数字。
  3. 对于不满足上述条件的数字,直接输出0,表示无法和牌。
  4. 对于满足上述条件的数字,枚举最后一张牌的所有可能,然后判断是否满足和牌条件。
    • 对于每一种可能的最后一张牌,判断其是否能够组成四个顺子或刻子。
    • 如果能够组成四个顺子或刻子,并且当前数字的出现次数为1,那么输出该数字,表示可以取到该数字的牌来和牌。

下面是具体的实现代码:

 

c

1#include <iostream>
2#include <vector>
3using namespace std;
4
5int main() {
6vector<int> nums(13);
7int n;
8cin >> n;
9for (int i = 0; i < n; i++) {
10cin >> nums[i];
11}
12vector<int> cnt(10);
13for (int i = 0; i < n; i++) {
14cnt[nums[i]]++;
15}
16for (int i = 1; i <= 9; i++) {
17if (cnt[i] > 1) { // 出现次数最多只能为1
18cout << "0" << endl;
19return 0;
20}
21}
22for (int i = 0; i < n; i++) {
23for (int j = 1; j <= 9; j++) {
24if (cnt[j] == 1 && (i == n - 1 || nums[i] != j)) { // 至少要有两张牌是不同的数字
25for (int k = i + 1; k < n; k++) { // 枚举最后一张牌的所有可能
26if (nums[k] == j) { // 能够组成四个顺子或刻子
27for (int m = i + 1; m < k; m++) { // 判断是否能够组成四个顺子或刻子
28if (nums[m] == nums[i]) continue; // 不是雀头
29if (nums[m] + 1 == nums[i]) continue; // 不是顺子
30if (nums[m] + 2 == nums[i]) continue; // 不是顺子
31if (nums[m] + 3 == nums[i]) continue; // 不是顺子
32if (nums[m] - 1 == nums[i]) continue; // 不是刻子(递减)
33if (nums[m] - 2 == nums[i]) continue; // 不是刻子(递减)
34if (nums[m] - 3 == nums[i]) continue; // 不是刻子(递减)
35if (nums[m] - 4 == nums[i]) continue; // 不是刻子(递减)
36cout << j << endl; // 可以取到该数字的牌来和牌
37}
38}
39}
40}
41}
42}
43cout << "0" << endl; // 没有满足条件的牌
44return 0;
45}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清贫码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值