描述
牛牛重新定义了斐波那契数列,牛牛定义f(n) = f(n-1)+f(n+1); f(1)=a, f(2)=b, 现在给定初始值 a, b,现在求第n项f(n)%1000000007的值。
其中 1<=|x|, |y|, n<=10^9
示例1
输入:
1,2,3
返回值:
1
说明:
f(2)=f(3)+f(1), 所以f(3) = f(2)-f(1)=2-1=1
示例2
输入:
-1,-2,3
返回值:
1000000006
说明:
同样例1:f(3)=-1%1000000007=1000000006
备注:
最终的答案应是一个非负整数,如-1 % 1000000007 = 1000000006
以下是Java代码实现:
public class Main {
public static int fibonacci(int a, int b, int n) {
if (n == 1) {
return a;
}
if (n == 2) {
return b;
}
int[][] dp = new int[4][1000000007];
dp[0][0] = a;
dp[0][1] = b;
for (int i = 1; i < 4; i++) {
for (int j = 0; j < 1000000007; j++) {
if (dp[i][j] == 0) {
continue;
}
int next = j + 2;
dp[i + 1][next] = (dp[i + 1][next] + dp[i][j]) % 1000000007;
next = j + 3;
dp[i + 1][next] = (dp[i + 1][next] + dp[i][j]) % 1000000007;
}
}
return dp[3][n % 1000000007];
}
public static void main(String[] args) {
int a = 1;
int b = 2;
int n = 3;
int result = fibonacci(a, b, n);
System.out.println(result);
}
}
代码解释:
- 定义一个fibonacci()函数,用于计算第n项的值。
- 如果n等于1或2,直接返回a或b。
- 定义一个dp数组,用于记录每个字符位置和当前数字的最少操作数。
- 初始化dp数组,将dp[0][0]和dp[0][1]分别设为a和b。
- 使用两层循环,遍历dp数组,更新dp数组的值。
- 对于每个字符位置和当前数字,尝试执行三种操作,并更新dp数组的值。
- 返回第n项的值。
- 在main()函数中,调用fibonacci()函数,并输出结果。