TH4 牛牛的Fib序列

18 篇文章 0 订阅
文章介绍了如何使用Java编程语言实现牛牛对斐波那契数列的独特定义,并在给定初始值a和b的情况下,计算第n项f(n)对1000000007取模的结果,利用动态规划方法优化计算过程。
摘要由CSDN通过智能技术生成

描述

牛牛重新定义了斐波那契数列,牛牛定义f(n) = f(n-1)+f(n+1); f(1)=a, f(2)=b, 现在给定初始值 a, b,现在求第n项f(n)%1000000007的值。

其中 1<=|x|, |y|, n<=10^9 

示例1

输入:

1,2,3

返回值:

1

说明:

f(2)=f(3)+f(1), 所以f(3) = f(2)-f(1)=2-1=1

示例2

输入:

-1,-2,3

返回值:

1000000006

说明:

同样例1:f(3)=-1%1000000007=1000000006

备注:

最终的答案应是一个非负整数,如-1 % 1000000007 = 1000000006

以下是Java代码实现:

 
public class Main {
    public static int fibonacci(int a, int b, int n) {
        if (n == 1) {
            return a;
        }
        if (n == 2) {
            return b;
        }
        int[][] dp = new int[4][1000000007];
        dp[0][0] = a;
        dp[0][1] = b;
        for (int i = 1; i < 4; i++) {
            for (int j = 0; j < 1000000007; j++) {
                if (dp[i][j] == 0) {
                    continue;
                }
                int next = j + 2;
                dp[i + 1][next] = (dp[i + 1][next] + dp[i][j]) % 1000000007;
                next = j + 3;
                dp[i + 1][next] = (dp[i + 1][next] + dp[i][j]) % 1000000007;
            }
        }
        return dp[3][n % 1000000007];
    }

    public static void main(String[] args) {
        int a = 1;
        int b = 2;
        int n = 3;
        int result = fibonacci(a, b, n);
        System.out.println(result);
    }
}

代码解释:

  1. 定义一个fibonacci()函数,用于计算第n项的值。
  2. 如果n等于1或2,直接返回a或b。
  3. 定义一个dp数组,用于记录每个字符位置和当前数字的最少操作数。
  4. 初始化dp数组,将dp[0][0]和dp[0][1]分别设为a和b。
  5. 使用两层循环,遍历dp数组,更新dp数组的值。
  6. 对于每个字符位置和当前数字,尝试执行三种操作,并更新dp数组的值。
  7. 返回第n项的值。
  8. 在main()函数中,调用fibonacci()函数,并输出结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清贫码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值