ACM - 算法 | ST算法处理RMQ问题

RMQ

RMQ (Range Minimum/MaximumQuery)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就是说,RMQ问题是指求区间最值的问题。

构建笛卡尔树可以解决RMQ问题,同时利用ST(倍增)算法构造dp二维数组,也可以完成RMQ问题的查询。

代码思路

定义: dp[i][j]表示数组arr[n]中的第 i 个元素到第 i + (2 ^ j) - 1 个元素(共2 ^ j个元素)中的最值。(接下来的介绍中都将以最大值为思路)

模拟: 假设一个数组arr[9]={ * , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 }( arr[0] 不用,视 arr[1] 为第一个元素)。根据上面的定义我们可以知道dp[1][2]=4,dp[5][2]=8,如果我们想要求dp[1][3],有两种思路,第一种就是通过遍历找出最大值 ,第二种思路,则是利用dp数组,通过前面的定义我们可以很轻松地发现dp[1][3]=max(dp[1][2],dp[5][2])。将dp[1][3]一分为二,并且通过比较二者的最大值即可得到dp[1][3],这样操作的时间复杂度更低,同时我们也得到了我们的递推公式。

RMQ查询: 假设查询问题为arr[n]中第l个元素到第r个元素中的最大值,首先找到一个k满足(1<<k)<=(r-l)+1&&(1<<(k+1))>(r-l)+1 ,那么max(dp[l][k],dp[r-(1<<k)+1][k]) 即为所求。dp[l][k]的元素覆盖范围为第 l 个~第 l + (2 ^ k) - 1 个元素,dp[r-(1<<k)+1][k]的元素覆盖范围为第 r - (2 ^ k) + 1个~第 r 个元素,由于(1<<(k+1))>(r-l)+1,由此可知(2 ^ k)>=(r-l+1)/2,所以覆盖范围可以满足l~r之间的元素。

递推公式

dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);

代码(ST + RMQ查询)

void ST(int n) {
	//ST算法构造dp
    for (int i = 1; i <= n; i++)
        dp[i][0] = A[i];
    for (int j = 1; (1 << j) <= n; j++) {
        for (int i = 1; i + (1 << j) - 1 <= n; i++) {
            dp[i][j] = max(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
        }
    }
}
int RMQ(int l, int r) {
	//RMQ查询
    int k = 0;
    while ((1 << (k + 1)) <= r - l + 1) k++;
    return max(dp[l][k], dp[r - (1 << k) + 1][k]);

代码源https://blog.csdn.net/qq_31759205/article/details/75008659

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值