计算图片相似度的方法

1.余弦相似度计算

把图片表示成一个向量,通过计算向量之间的余弦距离来表征两张图片的相似度。

from PIL import Image
from numpy import average, dot, linalg
# 对图片进行统一化处理
def get_thum(image, size=(64, 64), greyscale=False):
    # 利用image对图像大小重新设置, Image.ANTIALIAS为高质量的
    image = image.resize(size, Image.ANTIALIAS)
    if greyscale:
        # 将图片转换为L模式,其为灰度图,其每个像素用8个bit表示
        image = image.convert('L')
    return image
# 计算图片的余弦距离
def image_similarity_vectors_via_numpy(image1, image2):
    image1 = get_thum(image1)
    image2 = get_thum(image2)
    images = [image1, image2]
    vectors = []
    norms = []
    for image in images:
        vector = []
        for pixel_tuple in image.getdata():
            vector.append(average(pixel_tuple))
        vectors.append(vector)
        # linalg=linear(线性)+algebra(代数),norm则表示范数
        # 求图片的范数
        norms.append(linalg.norm(vector, 2))
    a, b = vectors
    a_norm, b_norm = norms
    # dot返回的是点积,对二维数组(矩阵)进行计算
    res = dot(a / a_norm, b / b_norm)
    return res
image1 = Image.open('010.jpg')
image2 = Image.open('011.jpg')
cosin = image_similarity_vectors_via_numpy(image1, image2)
print('图片余弦相似度', cosin)

2.哈希算法计算图片的相似度

感知哈希算法是一类算法的总称,包括aHash、pHash、dHash。顾名思义,感知哈希不是以严格的方式计算Hash值,而是以更加相对的方式计算哈希值,因为“相似”与否,就是一种相对的判定。

几种hash值的比较:

aHash:平均值哈希。速度比较快,但是常常不太精确。
pHash:感知哈希。精确度比较高,但是速度方面较差一些。
dHash:差异值哈希。精确度较高,且速度也非常快
值哈希算法、差值哈希算法和感知哈希算法都是值越小,相似度越高,取值为0-64,即汉明距离中,64位的hash值有多少不同。三直方图和单通道直方图的值为0-1,值越大,相似度越高。

import cv2
import numpy as np
from PIL import Image
import requests
from io import BytesIO
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
 
 
def aHash(img):
    # 均值哈希算法
    # 缩放为8*8
    img = cv2.resize(img, (8, 8))
    # 转换为灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # s为像素和初值为0,hash_str为hash值初值为''
    s = 0
    hash_str = ''
    # 遍历累加求像素和
    for i in range(8):
        for j in range(8):
            s = s+gray[i, j]
    # 求平均灰度
    avg = s/64
    # 灰度大于平均值为1相反为0生成图片的hash值
    for i in range(8):
        for j in range(8):
            if gray[i, j] > avg:
                hash_str = hash_str+'1'
            else:
                hash_str = hash_str+'0'
    return hash_str
 
 
def dHash(img):
    # 差值哈希算法
    # 缩放8*8
    img = cv2.resize(img, (9, 8))
    # 转换灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    hash_str = ''
    # 每行前一个像素大于后一个像素为1,相反为0,生成哈希
    for i in range(8):
        for j in range(8):
            if gray[i, j] > gray[i, j+1]:
                hash_str = hash_str+'1'
            else:
                hash_str = hash_str+'0'
    return hash_str
 
 
def pHash(img):
    # 感知哈希算法
    # 缩放32*32
    img = cv2.resize(img, (32, 32))   # , interpolation=cv2.INTER_CUBIC
 
    # 转换为灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 将灰度图转为浮点型,再进行dct变换
    dct = cv2.dct(np.float32(gray))
    # opencv实现的掩码操作
    dct_roi = dct[0:8, 0:8]
 
    hash = []
    avreage = np.mean(dct_roi)
    for i in range(dct_roi.shape[0]):
        for j in range(dct_roi.shape[1]):
            if dct_roi[i, j] > avreage:
                hash.append(1)
            else:
                hash.append(0)
    return hash
def calculate(image1, image2):
    # 灰度直方图算法
    # 计算单通道的直方图的相似值
    hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])
    hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])
    # 计算直方图的重合度
    degree = 0
    for i in range(len(hist1)):
        if hist1[i] != hist2[i]:
            degree = degree + \
                (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))
        else:
            degree = degree + 1
    degree = degree / len(hist1)
    return degree
 
 
def classify_hist_with_split(image1, image2, size=(256, 256)):
    # RGB每个通道的直方图相似度
    # 将图像resize后,分离为RGB三个通道,再计算每个通道的相似值
    image1 = cv2.resize(image1, size)
    image2 = cv2.resize(image2, size)
    sub_image1 = cv2.split(image1)
    sub_image2 = cv2.split(image2)
    sub_data = 0
    for im1, im2 in zip(sub_image1, sub_image2):
        sub_data += calculate(im1, im2)
    sub_data = sub_data / 3
    return sub_data
 
 
def cmpHash(hash1, hash2):
    # Hash值对比
    # 算法中1和0顺序组合起来的即是图片的指纹hash。顺序不固定,但是比较的时候必须是相同的顺序。
    # 对比两幅图的指纹,计算汉明距离,即两个64位的hash值有多少是不一样的,不同的位数越小,图片越相似
    # 汉明距离:一组二进制数据变成另一组数据所需要的步骤,可以衡量两图的差异,汉明距离越小,则相似度越高。汉明距离为0,即两张图片完全一样
    n = 0
    # hash长度不同则返回-1代表传参出错
    if len(hash1) != len(hash2):
        return -1
    # 遍历判断
    for i in range(len(hash1)):
        # 不相等则n计数+1,n最终为相似度
        if hash1[i] != hash2[i]:
            n = n + 1
    return n
 
 
def getImageByUrl(url):
    # 根据图片url 获取图片对象
    html = requests.get(url, verify=False)
    image = Image.open(BytesIO(html.content))
    return image
 
 
def PILImageToCV():
    # PIL Image转换成OpenCV格式
    path = "/Users/waldenz/Documents/Work/doc/TestImages/t3.png"
    img = Image.open(path)
    plt.subplot(121)
    plt.imshow(img)
    print(isinstance(img, np.ndarray))
    img = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
    print(isinstance(img, np.ndarray))
    plt.subplot(122)
    plt.imshow(img)
    plt.show()
 
 
def CVImageToPIL():
    # OpenCV图片转换为PIL image
    path = "/Users/waldenz/Documents/Work/doc/TestImages/t3.png"
    img = cv2.imread(path)
    # cv2.imshow("OpenCV",img)
    plt.subplot(121)
    plt.imshow(img)
 
    img2 = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    plt.subplot(122)
    plt.imshow(img2)
    plt.show()
 
def bytes_to_cvimage(filebytes):
    # 图片字节流转换为cv image
    image = Image.open(filebytes)
    img = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
    return img
 
def runAllImageSimilaryFun(para1, para2):
    # 均值、差值、感知哈希算法三种算法值越小,则越相似,相同图片值为0
    # 三直方图算法和单通道的直方图 0-1之间,值越大,越相似。 相同图片为1
 
    # t1,t2   14;19;10;  0.70;0.75
    # t1,t3   39 33 18   0.58 0.49
    # s1,s2  7 23 11     0.83 0.86  挺相似的图片
    # c1,c2  11 29 17    0.30 0.31
 
    if para1.startswith("http"):
         # 根据链接下载图片,并转换为opencv格式
        img1 = getImageByUrl(para1)
        img1 = cv2.cvtColor(np.asarray(img1), cv2.COLOR_RGB2BGR)
 
        img2 = getImageByUrl(para2)
        img2 = cv2.cvtColor(np.asarray(img2), cv2.COLOR_RGB2BGR)
    else:
        # 通过imread方法直接读取物理路径
        img1 = cv2.imread(para1)
        img2 = cv2.imread(para2)
 
    hash1 = aHash(img1)
    hash2 = aHash(img2)
    n1 = cmpHash(hash1, hash2)
    print('均值哈希算法相似度aHash:', n1)
 
    hash1 = dHash(img1)
    hash2 = dHash(img2)
    n2 = cmpHash(hash1, hash2)
    print('差值哈希算法相似度dHash:', n2)
 
    hash1 = pHash(img1)
    hash2 = pHash(img2)
    n3 = cmpHash(hash1, hash2)
    print('感知哈希算法相似度pHash:', n3)
 
    n4 = classify_hist_with_split(img1, img2)
    print('三直方图算法相似度:', n4)
 
    n5 = calculate(img1, img2)
    print("单通道的直方图", n5)
    print("%d %d %d %.2f %.2f " % (n1, n2, n3, round(n4[0], 2), n5[0]))
    print("%.2f %.2f %.2f %.2f %.2f " % (1-float(n1/64), 1 -
                                         float(n2/64), 1-float(n3/64), round(n4[0], 2), n5[0]))
 
    plt.subplot(121)
    plt.imshow(Image.fromarray(cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)))
    plt.subplot(122)
    plt.imshow(Image.fromarray(cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)))
    plt.show()
 
if __name__ == "__main__":
    p1="https://ww3.sinaimg.cn/bmiddle/007INInDly1g336j2zziwj30su0g848w.jpg"
    p2="https://ww2.sinaimg.cn/bmiddle/007INInDly1g336j10d32j30vd0hnam6.jpg"
    runAllImageSimilaryFun(p1,p2)

3.直方图计算图片的相似度

利用直方图计算图片的相似度时,是按照颜色的全局分布情况来看待的,无法对局部的色彩进行分析,同一张图片如果转化成为灰度图时,在计算其直方图时差距就更大了。对于灰度图可以将图片进行等分,然后在计算图片的相似度。

# 将图片转化为RGB
def make_regalur_image(img, size=(64, 64)):
    gray_image = img.resize(size).convert('RGB')
    return gray_image


# 计算直方图
def hist_similar(lh, rh):
    assert len(lh) == len(rh)
    hist = sum(1 - (0 if l == r else float(abs(l - r)) / max(l, r)) for l, r in zip(lh, rh)) / len(lh)
    return hist


# 计算相似度
def calc_similar(li, ri):
    calc_sim = hist_similar(li.histogram(), ri.histogram())
    return calc_sim


if __name__ == '__main__':
    image1 = Image.open('123.jpg')
    image1 = make_regalur_image(image1)
    image2 = Image.open('456.jpg')
    image2 = make_regalur_image(image2)
    print("图片间的相似度为", calc_similar(image1, image2))

4.SSIM(结构相似度度量)计算图片的相似度

SSIM是一种全参考的图像质量评价指标,分别从亮度、对比度、结构三个方面度量图像相似性。SSIM取值范围[0, 1],值越大,表示图像失真越小。在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用高斯加权计算每一窗口的均值、方差以及协方差,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性SSIM。

# -*- coding: utf-8 -*-
from skimage.measure import compare_ssim
from scipy.misc import imread
import numpy as np
# 读取图片
img1 = imread('../dataset/100002.png')
img2 = imread('../dataset/100001.png')
img2 = np.resize(img2, (img1.shape[0], img1.shape[1], img1.shape[2]))
print(img1.shape)
print(img2.shape)
ssim =  compare_ssim(img1, img2, multichannel = True)
print(ssim)

5.基于互信息(Mutual Information)计算图片的相似度

通过计算两个图片的互信息来表征他们之间的相似度,如果两张图片尺寸相同,还是能在一定程度上表征两张图片的相似性的。但是,大部分情况下图片的尺寸不相同,如果把两张图片尺寸调成相同的话,又会让原来很多的信息丢失,所以很难把握。经过实际验证,此种方法的确很难把握。

from sklearn import metrics as mr
from scipy.misc import imread
import numpy as np
 
img1 = imread('1.jpg')
img2 = imread('2.jpg')
 
img2 = np.resize(img2, (img1.shape[0], img1.shape[1], img1.shape[2]))
 
img1 = np.reshape(img1, -1)
img2 = np.reshape(img2, -1)
print(img2.shape)
print(img1.shape)
mutual_infor = mr.mutual_info_score(img1, img2)

print(mutual_infor)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值