排列组合—100个人,两两分成一组,共有多少种分法?

α.首先可以得出100个人,两两一组,共有50组。那么对于第一次选取来讲,共有种取法,对于第二次选取来讲,共有种取法,按照分类相加,分步相乘的原则,同理可以得出:

50组共有***…*种取法。                               (*)

但是这样选取会有重复的取法。因为假设50组都已经分好了,第一次选取和第二次选取的人互换了。也就是第一种取法,第一次选了①和②,第二次选了③和④,后面的假设为序列X。第二种取法可以为第一次选了③和④,第二次选了①和②,后面的假设为序列X。这里的第一次和第二次结构是一样的,也都为上面取法中的两种情况,所以上面的取法有重复。

β.其次取消重复结构,可以将其分成第1组,第2组,...,第50组。如果每组的有各自的编号,每组各不相同,种数为(*)式。但是现在每组相同,导致结构相同。可以看出,对于每一种分配的方法(每一种互异的结构),它们的全排列就是该种分配方法存在的所有重复结构。例如第1组:①,②;第2组:③,④;...。它们的全排列为组数不同情况下的种数。现在组数相同,每一种都应该除以它们的全排列。50组即除以50!。

γ.(*)式可以得出(*)=

设题目的答案为t,则t==

由于该等式不具有普遍性规律,用公式不好表达,于是先采用类比推理,得出通项,在采用数学归纳法来证明通项。

(i)类比证明得出通项:设人数为n(保证n有意义,n为正整数,而且n为偶数)

当n=2时,共有1种分法;

当n=4时,共有1*3种分法;

当n=6时,共有1*3*5种分法;

...

当n=2k时,共有1*3*5*...*(n-1)。(k≥1且k∈N)

(ii)数学归纳法证明通项:

由γ和(i)可知,如果可以证明=99*97*95*...*3*1的话,那么关于这个问题就可以可得一个另外的好表示的解了。

整理出通项为:=(n-1)*(n-3)*...*3*1(n≥2且n∈N)

证明:当n=2时,等式左边==1,等式右边=1

∴左边=右边,等式成立

假设当n=m时等式成立(m≥2且n∈N)

=(m-1)*(m-3)*...*3*1

那么当n=m+2时,

=*=*=(m+1)(m-1)*(m-3)*...*3*1

等式依然成立

∴当n≥2且n∈N时,等式都成立。

∴对于n个人两两为一组,共有(n-1)*(n-3)*...*3*1(n≥2且n∈N)种分法;

当n=100时,共有99*97*95*...*3*1种分法。

∂:因为最开始做题的时候,知道有重复项,但是介于选项里的通项,没有得出来,而且重复项的消除想的也不是那么明显,所以先将有重复项的提出来,再去解决重复项。没有先分组,而是先分次数。

在C语言中,要将四个人按照成绩尽可能平均地分成两个队伍,保证实力差距最小,你可以通过动态规划的方式来解决这个问题。假设我们有一个包含四个元素的成绩数组,可以按照以下步骤操作: 1. 首先,对成绩数组进行排序,从小到大排列。 2. 初始化两个变量,一个记录当前分组的总成绩(sum1),另一个记录另一组的总成绩(sum2),初始值都设为0。 3. 创建一个临时变量temp,用于存储每次拆分时的实力差距。 4. 使用循环,从第一个元素开始遍历数组,依次将每个元素添加到两个队列中,每加一次更新对应的sum1或sum2,并计算当前实力差距(|sum1 - sum2|)。 5. 每次循环都将temp更新为新差距,直到所有元素分配完毕。 6. 循环结束后,temp中的数值就是实力差距最小的情况。 以下是一个简单的伪代码示例: ```c #include <stdio.h> #include <stdlib.h> int compare(const void *a, const void *b) { return (*(int*)a - *(int*)b); } void split_four_students(int scores[], int n, int* min_diff) { // 排序数组 qsort(scores, n, sizeof(int), compare); int sum1 = 0, sum2 = 0; int temp_diff = scores[0]; for (int i = 0; i < n; i++) { if (i % 2 == 0) sum1 += scores[i]; else sum2 += scores[i]; temp_diff = abs(sum1 - sum2); if (temp_diff < *min_diff) *min_diff = temp_diff; } } int main() { int scores[] = {80, 90, 70, 100}; // 示例分数 int min_diff = INT_MAX; // 初始最大差距 int n = sizeof(scores)/sizeof(scores[0]); split_four_students(scores, n, &min_diff); printf("实力差距最小为: %d\n", min_diff); return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值