排列组合中两两配对问题的分析

在等可能概型中,有一类问题是球放盒子问题,比如把m个球,放在n(n >=m )个盒子中,计算各种情况的概率,这类问题难点在于排列组合的运算,下面按照从易到难的情况对这类问题进行分析:

1、每个盒子只能放一个球

计算每个盒子最多只能放一个球的概率,首先来看下这个问题的解题思路:
每个球可以放n个盒子,因此m个球的样本空间的样本个数N(S)= n m n^{m} nm
第一个球可以选n个位置
第二个球可以选n-1个位置
….
第m个球可选n-m+1个位置
N(A)=n*(n-1)(n-m+1)= P n m P_n^m Pnm
p(A)= P n m n m \frac{P_n^m}{n^{m}} nmPnm
这个问题很简单,不用多解释

2、每个盒子可以放多个球

如果把问题复杂化一点,每个盒子可以放多个球,要求所有的球放i个盒子的概率怎么计算呢,下面就来研究一下

为了便于问题分析,先把n和m具体化,并且设置小一点方便计算,就假设要求是共3个盒子,4个球,放在2个盒子中;这种情况下,就有两种分法,第一种是一个盒子放1个球,另一个放3球(1+3);第二种是2+2,下面分别进行计算分析。

2.1 1+3的情况

先计算1+3的情况,首先在4个球中选1个就是 C 4 1 C_4^1 C41,这个球有3个盒子可选就是 C 3 1 C_3^1 C31,剩下的3个球选3个是 C 3 3 C_3^3 C33,有2个盒子可选是 C 2 1 C_2^1 C21
这种情况的N= C 4 1 C 3 1 C 3 3 C 2 1 C_4^1C_3^1C_3^3C_2^1 C41C31C33C21,而且可以把 C 3 1 C 2 1 C_3^1C_2^1 C31C21组合起来就是 P 3 2 P_3^2 P32,这个怎么理解呢,其实就是有两组球,放在3个盒子中进行排列运算的结果;而 C 4 1 C 3 3 C_4^1C_3^3 C41C33就是4个球分成1+3两组的组合结果,根据运算公式得到最终的样本个数是24个,列个表格来验证一下结果:

box1box2box3
1234
1234
2341
1234
2341
2341

如表格所示(1,234)的放置方法共有6种,而(2,134),(3,124),(4,123)四种分法也不会有重复,因此计算的结果24是正确的;

2.2 2+2的情况

下面来计算2+2的情况,按照前面的思路,N= C 4 2 C 3 1 C 2 2 C 2 1 C_4^2C_3^1C_2^2C_2^1 C42C31C22C21,或者N= C 4 2 C 2 2 P 3 2 C_4^2C_2^2P_3^2 C42C22P32=36,还是列一张表,来验证一下结果:

box1box2box3
1234
1234
3412
1234
3412
3412
1324
1324
2413
1324
2413
2413
1423
1423
2314
1423
2314
2314

然而表格统计的结果只有18个,刚好是之前运算结果的一半,问题出在哪里?

首先看 P 3 2 P_3^2 P32,两组数,3个位置,并且有顺序,所以没有问题。
再来看下 C 4 2 C 2 2 C_4^2C_2^2 C42C22,按照理解应该是先从4个数种选2个,再从剩下的2个种选2个,集合是这样的{(12,34),(13,24),(14,23),(23,14),(24,13),(34,12)},但是当把这个集合的数拿到盒子中做组合运算就会重复,因为(12,34)和(34,12)是等价的,实际的结果应该是{(12,34),(13,24),(14,23)},这之间差的2倍实际上就是2个组的全排列 P 2 2 P_2^2 P22,注意这里的2是两个组的那个2,而不是每个组中2个数字的那个2;

由于两组数的个数相同, C 4 2 C 2 2 C_4^2C_2^2 C42C22的计算方法暗含了一个根据组数进行的全排列,因此在运算时要把 P 2 2 P_2^2 P22除掉,再次强调这里的2是组的个数,最后得到的结果是:N= C 4 2 C 2 2 P 2 2 P 3 2 \frac{C_4^2C_2^2}{P_2^2}P_3^2 P22C42C22P32 =18

最后汇总1+3和2+2的两种情况,分两组的样本个数为N= C 3 1 C 2 1 P 3 2 + C 4 2 C 2 2 P 2 2 P 3 2 C_3^1C_2^1P_3^2+\frac{C_4^2C_2^2}{P_2^2}P_3^2 C31C21P32+P22C42C22P32,后面计算概率除以样本总数就不再赘述了。

3、一般情况

推广到更普遍的情况,n个组,每组k个数(所有数字不重复)的组合的总数为:
N= ∏ i = 0 n − 1 C n k − i k k P n n \frac{\prod_{i=0}^{n-1}C_{nk-ik}^k}{P_n^n} Pnni=0n1Cnkikk,(这个要用归纳法去证明,限于时间精力有限就不想证明了,结果应该是对的),而之前1+3的情况,1和3都只有一组,按照这个公式把 P 1 1 {P_1^1} P11带进去也是正确的;

如果要在m个容器中进行放置,就再乘以 P m n P_m^n Pmn进行排列,如果要运算概率,就再除以N(S)= m n k m^{nk} mnk

另外网上看到很多人问两两组合的问题,比如6个数两两组合有多少情况,网上很多答案是 C 6 2 C_6^2 C62,结果15是对的,但是算法错了,应该是 C 6 2 C 4 2 C 2 2 P 3 3 = 15 \frac{C_6^2C_4^2C_2^2}{P_3^3}=15 P33C62C42C22=15

以上就是对于多个数进行k*n分组的情况下,计算排列组合以及概率的一些分享,希望能对大家有帮助。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值