ML-Agents Penguins项目01:ML-Agents和Anaconda设置 (踩坑笔记)

疫情期间,Unity官方的Premium课程免费开放,ML-Agents: Penguins项目是unity关于机器学习的一篇中级教程,原版为英文,为了方便学习,进行搬运翻译,其中包含了作者在环境配置时踩的坑和解决方案,如有错误欢迎指正,一切以官方资料为准。

ml_agents工具包是unity官方推出的一个代码库,可以允许程序员在没有任何增强学习的知识的前提下,将神经网络和增强学习用于游戏的决策。

介绍

软件要求:

  • Unity2019.3及以上版本
  • Anaconda2019.10

Untiy就不过多介绍了。从UnityHub或者官方网站下载对应版本即可。

Anaconda是管理Python安装并创建独立环境的工具,帮助程序员在没有Python的环境下快速训练ML-Agents。本质上,这是一个特殊的命令行,在不同的环境中安装特定的Python库。大多时候python脚本都依赖于特定的库才可以运行,系统设置十分复杂,这个工具的使用可以大幅提升生产力,减少出错率。

下载ML_Agent工具包
  1. ML_Agent属于Unity的开源项目,可以直接再GitHub中进行下载,发布页面,如果Github下载速度慢,建议从链接下载;
  2. 找到ML-Agents Beta 0.13.x发布版本,下载 Source code(zip) ,源代码。 在这里插入图片描述
  3. 如果要使用最新版本,参阅官方的 迁移文档 来获得更多资料。
  4. 将源代码解压到本地合适的位置。
下载并安装Anaconda
  1. Anaconda官方下载页面,官方下载界面我只找到了最新版本,历史版本下载:参考网址
  2. 选择对应的系统(比如:Windows)
  3. 选择Anaconda 2019.10版本,Python 3.7版本
  4. 进行安装
  5. 启动 Anaconda prompt,Anaconda提示符允许您为ML-Agents培训脚本创建Python环境。在这里插入图片描述4
  6. 在Anaconda提示符下键入以下命令,然后按键盘上的Enter键,此命令将创建一个名为ml-agents 的新Python 3.7环境。您可以根据需要将其重命名。例如,您可能已经具有以前版本中称为ml-agents 的环境,因此可以将此环境称为ml-agents_0.13.0 。

$$可选操作,建议执行
国内环境下载Anaconda官方的第三方库可能把你慢死,建议切换到清华的下载源:
方法如下:

conda config --show channels  #显示当前的下载源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ #添加清华的源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes   #切换源

上述代码逐步执行,即可切换成功。
在这里插入图片描述
如果想切换会默认的源,执行下面代码:

conda config --remove-key channels #切回默认源

$$可选操作结束

正式安装环境:

conda create -n ml-agents python=3.7

确定安装文件,输入Y,按Enter继续
在这里插入图片描述
7.安装完成后如下图所示
在这里插入图片描述
输入以下命令激活环境:

conda activate ml-agents
  1. 利用cd命令 进入解压缩的ml_agents文件目录
cd <path to ml-agents directory>

举个栗子:

cd C:\Users\YourUsername\Code\ml-agents_0.13.1

$$ 作者安装时遇到的问题:

此时如果将文件解压在了不是C盘的其他盘符,直接cd是进不去的,需要退回c盘根目录后再跳转到D盘在这里插入图片描述
9. 在Anaconda提示符中运行以下命令以安装ML-Agent:

在开始之前先说一下作者踩到了哪些坑?(建议进行和我一样的操作后再继续执行)
按照官方给的正常操作,一般来讲是安装不上的,会遇到如下的问题。
在这里插入图片描述
原因:pip的时候各种关卡限制了它的网速,导致网速过慢或者安装失败。
解决方案:换源
给几个参考:

  • 阿里云 http://mirrors.aliyun.com/pypi/simple/
  • 中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/
  • 豆瓣(douban) http://pypi.douban.com/simple/
  • 清华大学 https://pypi.tuna.tsinghua.edu.cn/simple/
  • 中国科学技术大学 http://pypi.mirrors.ustc.edu.cn/simple/

具体操作步骤
windows:直接在user目录中创建一个pip目录,如:C:\Users\xx\pip,新建文件pip.ini
添加内容:

[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
[install]
trusted-host=mirrors.aliyun.com

然后再执行pip的时候就一帆风顺了。

踩坑结束

小结:下面的操作就是在解压的ml_agent文件夹下面的ml-agents-envs子目录和ml-agents子目录下安装环境。

  1. 进入ml-agents-envs子目录
cd ml-agents-envs
  1. 安装
pip install -e ./

在这里插入图片描述
03. 退回到父目录

cd ..
  1. 导航到ml-agents子目录。
cd ml-agents
  1. 安装
pip install -e ./

在这里插入图片描述
06. 回到父目录。

cd ..

ML-Agents现在应该完全安装在Anaconda Python环境中。将在后续教程中使用它。如果由于某种原因关闭了Anaconda prompt ,则可以使用上面使用的相同命令重新激活它。

激活代码和上面一样,是否激活自己一眼就判断出来了。

conda activate ml-agents

没激活是这样的:
在这里插入图片描述

激活了是这样的:
在这里插入图片描述
可以使用以下命令查看环境列表:

conda env list

关于Anaconda环境配置的更多信息可以查阅:链接

结论

环境搭建完成。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值