视频字幕生成综述A Survey on Video captioning

文章探讨了视频描述任务,包括数据集、挑战,如多样性和长序列建模,以及评估指标如BLEU、METEOR。它还介绍了视频描述的神经网络方法,如CNN和RNN,并讨论了基于模板和神经网络的视频字幕技术的优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Introduction

视频描述(video captioning)是一种将视频序列自动转换为自然语言描述的任务。其目标是生成一个自然语言句子,准确地描述视频中所发生的事件,包括视频中的对象、动作、场景等等。视频描述在自然语言处理和计算机视觉领域都有广泛的应用,例如视频搜索、自动视频摘要、人机交互等。

Datasets

MSVD(Microsoft Video Description)、MSR-VTT(Microsoft Research Video-to-Text)、ActivityNet Captions、Youtube2Text等。这些数据集包含了大量的视频片段和对应的描述文本,可用于训练和评估视频描述模型。

Challenge

  • 视频数据的多样性。视频数据可能包含不同的场景、动作、对象等,这对视频描述模型的泛化能力提出了挑战。
  • 视频的长序列建模。视频通常包含大量的帧,可能需要几分钟的时间才能完全播放完毕。视频描述模型需要能够对整个视频序列进行建模,并找到视频中最重要的内容来生成描述性文本。如何总结视频中所有重要的内容
  • 视频与文本之间的对应关系。视频中的每个帧都需要与描述文本中的单词或短语相对应。视频描述模型需要能够理解视频内容,并将其映射到与其对应的文本单词或短语。
  • 评价指标的不确定性。由于视频描述是一种主观任务,评价指标的选择和使用可能会对模型的表现产生影响,因此需要仔细考虑如何选择和使用评价指标。
  • 训练数据的缺乏。由于视频描述需要大量的配对数据(视频帧与对应的描述文本),因此构建大规模的视频描述数据集需要耗费大量的人力和时间。这使得训练数据的缺乏成为了视频描述模型的一个瓶颈。

总之,视频描述模型在实际应用中面临的挑战包括模型的泛化能力、长序列建模、视频与文本之间的对应关系、评价指标的不确定性和训练数据的缺乏。

Evaluation Criteria

常用的视频描述模型评估指标包括:

  • BLEU(Bilingual Evaluation
    Understudy):基于n-gram的匹配度量指标,用于评估生成的描述文本与参考文本之间的相似度。
  • METEOR(Metric for Evaluation of Translation with Explicit
    ORdering):基于n-gram和词义匹配的度量指标,用于评估生成的描述文本与参考文本之间的相似度。
  • ROUGE(Recall-Oriented Understudy for Gisting
    Evaluation):基于n-gram的匹配度量指标,用于评估生成的描述文本与参考文本之间的相似度。
  • CIDEr(Consensus-based Image Description
    Evaluation):基于多个参考文本的相对重要性的度量指标,用于评估生成的描述文本与参考文本之间的相似度。
  • SPICE(Semantic Propositional Image Caption
    Evaluation):基于语义解析和逻辑形式的度量指标,用于评估描述文本的准确性和语义相似性。
  • WMD(Wo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值