自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Will Lin的博客

计算机视觉小菜鸟,欢迎关注知乎账号@林天威,个人主页:https://wzmsltw.github.io/

  • 博客(39)
  • 收藏
  • 关注

原创 [CVPR 2018论文笔记] 真实监控场景中的异常事件检测

安防作为近年最热门的计算机视觉研究落地方向,与视频分析研究有着很紧密的关系。在真实的监控视频中,一个常见的需求就是要自动识别视频流中的异常事件,也就是异常事件检测任务(Anomaly detection)。这个任务有许多的难点,比如异常事件发生的频率很低,导致数据的收集和标注比较困难;异常事件的稀少导致训练中的正样本远少于负样本;在监控场景中,不管是通常(normaly)还是异常(a...

2018-06-03 22:09:12 8054 21

原创 [论文笔记] 用于在线视频理解的高效卷积网络

视频理解算法有很多的应用场景,包括视频推荐、监控分析、人机交互等等。在这些真实的应用场景中,通常对算法的实时性有很高的要求。现有的行为识别方法还未能在分类的准确性和运行速度都达到比较好的效果(双流类的方法效果较好,但光流等步骤使得速度很受限;3D 网络类的方法目前的精度和速度也都还不够理想)。所以在保证分类效果的前提下,提高网络的运行速度是当前一个很重要的研究课题。针对这个问题,这篇论文笔记主...

2018-06-03 21:59:57 2656 3

原创 【论文笔记】光流与行为识别的结合研究

在视频行为识别(action recognition)方向,目前最常见的网络框架有两类,一类是直接将视频作为输入的3D卷积网络,另一类即是将图像以及光流(optical flow)分别作为输入的two-stream网络。目前two-stream类的方法在效果上还是明显要优于3D卷积类的方法,本文主要讨论two-stream类方法中光流的应用。虽然光流在two-stream类的方法里被广泛应

2017-12-29 22:55:10 4040 3

原创 Moments in Time:IBM-MIT联合提出最新百万规模视频动作理解数据集

在过去一年中,视频理解相关的领域涌现了大量的新模型、新方法,与之相伴的,今年也出现了多个新的大规模的视频理解数据集。近期,MIT-IBM Watson AI Lab 就推出了一个全新的百万规模视频理解数据集Moments-in-Time[1]。虽然没有之前的YouTube-8M数据集大,但应该是目前多样性,差异性最高的数据集了。该数据集的任务仍然为视频分类任务,不过其更专注于对“动作”的分类,此处

2017-12-27 19:28:51 1733

原创 百度BROAD-Video Highlights视频精彩片段数据集简要介绍与分析

前两天在微信上看到这条新闻 ,百度搞了一个数据集开源计划 Baidu Research Open-Access Dataset (BROAD),其网址为 Baidu Research Open-Access Dataset。首期开放了3个数据集,其中有一个数据集 称为 Video Highlights 。我发现这个数据集与我研究的temporal action detection 以及temp

2017-12-27 19:24:17 3149

原创 论文笔记:第一人称视角视频中的行人轨迹预测

本文投稿于AI科技评论公众号。视频中的人体动作分析是计算机视觉研究领域中的一个重要方向,包括动作分类,时序动作检测,时空动作检测等等方向。前几天日本东京大学在 arXiv 上放出的一篇论文(大概是 CVPR 投稿文章吧)提出了一个新的人体动作分析问题:第一人称视频中的行人轨迹预测问题,并提出了一个新的数据集以及一个新的行人轨迹预测算法。论文的题目为:Future Person Lo

2017-12-27 19:18:32 2242

原创 【ICCV 2017论文笔记】我们应当如何理解视频中的人类行为?

搬运自我的知乎专栏:https://zhuanlan.zhihu.com/wzmsltw  。欢迎大家关注。最近ICCV 2017公布了论文录用的情况,我照例扫了一遍论文列表寻找感兴趣的文章。“WhatActions are Needed for Understanding Human Actions in Videos?”[arXiv 链接] 一文是我觉得很有趣的一篇文章。这

2017-12-27 19:13:40 2791

原创 ActivityNet Challenge 2017 冠军方案分享

搬运自我的知乎专栏:https://zhuanlan.zhihu.com/wzmsltw  。欢迎大家关注。CVPR 2017 这几天开始在夏威夷火热举行,CVPR’17 上举行的各类challenge在近期也纷纷落下帷幕。在过去的两个多月时间里,我在赵旭老师和寿政学长的指导下,参加了CVPR‘17 上举办的 ActivityNet Large Scale Activity Rec

2017-12-27 19:09:56 5624 4

原创 Temporal Action Detection (时序动作检测)方向2017年会议论文整理

2017年马上要过去,自己也在时序动作检测这个方向正好做了一年时间,所以最近整理了一下今年各大视觉会议上(CVPR,ICCV,ACMMM,BMVC,AAAI等)时序动作检测这个方向的论文,供大家参考。关于Temporal Action Detection (Localization) 时序动作检测这一方向的介绍,可以见我之前的专栏文章: Video Analysis 相关领域解读之Temporal

2017-11-29 16:00:05 5137 1

原创 Single Shot Temporal Action Detection 论文介绍

这篇笔记主要介绍我今年上半年投稿到ACM Multimedia会议的工作。这篇论文的实验大概从寒假放假回来后开始,在ICCV截稿前一个礼拜开始准备论文,但时间太赶没能完成实验和论文写作,所以花了一个多月完善后投稿了ACM multimedia。ACM multimedia 今年取消了long/short paper的区分,而是改为oral/poster paper,这两者均为9页长度(8页正文,1页

2017-07-12 22:16:28 4512 5

原创 SOHU图文匹配竞赛-方案分享

注:本文为原创文章,如需转载请先私信联系。最近参加的sohu图文匹配竞赛在这周二在北京举办了决赛,虽然期末忙没去成,但也全程视频直播围观了比赛。我所在的团队(“中国国家跳水队”,排名如队名,一度严重跳水)获得了初赛第3, 复赛第9, 决赛第6的成绩,正好擦边获得了三等奖。参加这次比赛的初衷是作为机器学习课程的大作业,这两天写了课程报告,所以将报告内容修改了一下进行分享。主要分为三个部分,分别为比赛背

2017-06-16 13:10:22 3031 3

原创 Video Analysis 相关领域介绍之Video Captioning(视频to文字描述)

之前两次分别介绍了video analysis中的action recognition 以及 temporal action detection 这两个领域。这两个领域算是对视频mid-level的理解,而我最近看论文主要在关注如何去理解视频的高层语义(high-level)信息,这方面一个重要的领域就是video captioning。video caption

2017-05-05 10:58:39 12932 1

原创 Video Analysis 相关领域解读之Temporal Action Detection(时序行为检测)

本文投稿于极视角公众号,链接为文章链接.也欢迎大家关注我的知乎专栏CV论文笔记及其他。上一篇笔记介绍了 Action Recognition 领域的研究进展。Action Recognition主要是用于给分割好的视频片段分类,但实际中大部分视频都是未分割的长视频。所以这就引出了今天要介绍的领域:Temporal Action Detection

2017-04-27 12:15:06 14014 11

原创 Video Analysis相关领域介绍之Action Recognition(行为识别)

这篇文章投稿在极视角公众号,微信链接 随着深度学习技术的发展,以及计算能力的进步(GPU等),现在基于视频的研究领域越来越受到重视。视频与图片最大的不同在于视频还包含了时序上的信息,此外需要的计算量通常也大很多。目前主要在做视频中动作定位相关的工作,为了开拓思路,读了不少视频分析相关领域的文章,所以打算写几篇博客,对视频分析相关的几个领域做一个简要的介绍。这篇主要介绍Action Recogniti

2017-04-19 12:28:35 18555 23

原创 SCNN-用于时序动作定位的多阶段3D卷积网络

注:本文首发在微信公众号-极市平台。如需转载,请联系微信Extreme-Vision这篇文章主要介绍Zheng Shou在CVPR2016上的工作”Temporal action localization in untrimmed videos via multi-stage cnns”[1]。之后会再介绍他在CVPR2017 上的新工作。首先介绍一下这篇文章要解决的问题。视频中的人体行为识别主要包

2017-03-23 10:02:55 13054 6

原创 行为识别笔记:C3D network-用于视频特征提取的3维卷积网络

注:本文首发在微信公众号-极市平台。如需转载,请联系微信Extreme-Vision卷积神经网络(CNN)近年被广泛应用于计算机视觉中,包括分类、检测、分割等任务。这些任务一般都是针对图像进行的,使用的是二维卷积(即卷积核的维度为二维)。而对于基于视频分析的问题,2D convolution不能很好得捕获时序上的信息。因此3D convolution就被提出来了。3D convolution 最早应

2017-03-10 10:17:52 46362 43

原创 计算机视觉-论文阅读笔记-基于高性能检测器与表观特征的多目标跟踪

这篇笔记主要是对今年ECCV2016上的论文:POI:Multiple Object Tracking with High Performance Detection and Appearance Feature 进行整理. 这篇文章的基本思路是在每帧上用检测器检测行人位置,在每帧之前利用行人检测框的表观特征(Appearance Feature)进行前后帧行人框的匹配,从而实现对行人的跟踪.所以这

2016-12-16 11:50:48 6382 13

原创 行为识别笔记:iDT算法用法与代码解析

转载请注明出处:在上一篇笔记:iDT算法 中,对iDT算法的原理做了简单的介绍。由于iDT算法提供了算法源码,自己也用它做了不少实验,因此介绍一下其代码的使用方法,并对源代码做一些解析。iDT算法的代码在作者个人主页可以下载到,也可以点击此处下载:iDT算法源码 。除了本篇博客之外,还有iDT用法及源码剖析 这篇文章介绍的也不错,供参考。基本功能iDT算法框架中还包括Fisher Vector编码和

2016-11-18 19:03:29 19059 85

原创 行为识别笔记:improved dense trajectories算法(iDT算法)

iDT算法是行为识别领域中非常经典的一种算法,在深度学习应用于该领域前也是效果最好的算法。由INRIA的IEAR实验室于2013年发表于ICCV。目前基于深度学习的行为识别算法效果已经超过了iDT算法,但与iDT的结果做ensemble总还是能获得一些提升。所以这几年好多论文的最优效果都是“Our method+iDT”的形式。此前由于项目原因,对iDT算法进行了很多研究和实验,故此处对其核心思路与

2016-11-03 17:11:55 44195 40

原创 opencv学习笔记(三):几种去噪滤波器的实现

现在在上数字图像处理的课程,最近的一次作业要求不用OpenCV自带的滤波器函数来实现几种滤波器,以实现对加入椒盐噪声的图像的图像恢复。也是对markdown编辑器的一次练习。椒盐噪声椒盐噪声是一种很简单的噪声,即随机将图像中一定数量的像素点设置为0(黑)或255(白)。由于看起来好像在图像上撒了椒盐一样,故被称为椒盐噪声。

2016-10-25 22:02:08 13583 3

原创 深入理解计算机系统-笔记-第一章-计算机系统漫游

深入理解计算机系统 算是一本非常经典的教材。之前看了一些但又放在了一边,这次重写开始读这本书,并通过摘记书中重要知识点的方式来加深自己的印象。希望能坚持写完     由于我的目标是成为一名算法工程师,所以对这本书的阅读也有所侧重,主要参考了一篇文章:评《深入理解计算机系统》     这本书的勘误见:http://www.yiligong.org/csapp2e/1. 编译文件的

2016-10-22 19:17:42 1640 1

原创 行为识别笔记:HOG,HOF与MBH特征

在行为识别的iDT算法中,主要使用了HOG,HOF,MBH和Dense Trajectory四种特征。这里主要对前三者进行介绍。1. HOG特征此处HOG特征的介绍转载了zouxy09大神的文章  http://blog.csdn.net/zouxy09/article/details/7929348/方向梯度直方图(Histogram of Oriented Grad

2016-10-09 10:09:19 19730 8

转载 周志华《机器学习》勘误表

周志华老师的《机器学习》的勘误。当时买的是第一次印刷的版本,现在都是第10次印刷了... 转发作收藏原帖地址: http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/MLbook2016.htm勘误修订[部分修订是为了更便于读者理解,并非原文有误](第一版第十次印刷, 2016年9月):(第一版第九次印刷,

2016-10-01 21:48:51 5317

转载 《统计学习方法》勘误表

去年刚接触机器学习时拜读过李航老师的统计学习方法,很有收获。 最近看到李航老师更新了新的勘误表,转载作为收藏原文链接 http://blog.sina.com.cn/s/blog_7ad48fee01017dpi.html#cmt_3285959

2016-10-01 21:39:38 5806

原创 行为识别笔记:关于行为检测/识别问题的分类及研究进展的讨论

近期在做在线动作识别的项目,阅读了不少文献,发现现有的方法基本都是离线的action recognition和action detection(离线指这些算法都是在处理切割好的视频片断)。而online action detection还没有很好的方法。以下给出我总结的动作检测/识别问题的分类及一些研究进展。Action Recognition目的:判断一个视频片断中某

2016-10-01 20:55:39 10199 8

原创 ubuntu14.04 下安装GPU版本的OpenCV(CUDA支持)

之前在ubuntu下用github上的脚本一键安装了OpenCV,最近在用一个密集光流计算程序时发现需要用gpu版本的OpenCV,因此需要在编译opencv时选择CUDA支持。在过程中遇到了各种问题,主要参考了以下两篇内容http://blog.aicry.com/ubuntu-14-04-install-opencv-with-cuda/http://answers.openc

2016-10-01 20:25:28 7665 4

翻译 XGBoost简易调参指南

本文为kaggle上一位选手分享的xgboost调参经验的翻译。方便对xgboost模型参数的快速调试。原文:https://www.kaggle.com/c/bnp-paribas-cardif-claims-management/forums/t/19083/best-practices-for-parameter-tuning-on-models数据的划分:一般从训练集里划分20%作

2016-10-01 20:03:31 6468

原创 行为识别笔记:Stacked Fisher Vector基本原理

Stacked Fisher Vector是Xiaojiang Peng在“Action Recognition with Stacked Fisher Vectors”一文中提出的用于动作识别的算法。SFV与FV结合的方法达到了当时state-of-the-art的结果。   上一篇介绍了Fisher Vectors的基本原理。FV的码书训练与编码过程为:1.选择GMM中K的大小

2016-07-28 11:49:42 5311

原创 机器学习笔记:Fisher Vector基本原理与用法

近期在看的动作识别相关的工作中fisher vector及其改进版本被广泛的应用,因此打算从Fisher Vector开始入手整理相关知识。参考的博客内容:http://blog.csdn.net/ikerpeng/article/details/41644197 从高斯分布开始介绍了FV,比较易于理解http://blog.csdn.net/happyer88/art

2016-07-27 22:20:39 21924 6

原创 机器学习-周志华-课后习题答案-决策树

本文为博主原创,由于没有可以参考的答案,所以内容中若有错误的地方烦请指正,不甚感激。注:本文中的代码均使用python,常用工具包包括 pandas,scikit-learn,numpy, scipy,matplotlib等。4.1试证明对于不含冲突数据(即特征向量完全相同但标记不同)的训练集,必存在与训练集一致(即训练误差为0)的决策树答:假设不存在与训练集一致的决策

2016-04-04 23:07:26 24174 13

原创 机器学习算法的Python实现 (3):决策树剪枝处理

本文数据参照 机器学习-周志华 一书中的决策树一章。可作为此章课后习题4的答案代码则参照《机器学习实战》一书的内容,并做了一些修改。CART决策树 使用基尼指数(Gini Index)来选择划分属性。其公式如下:本文内容包括未剪枝CART决策树、预剪枝CART决策树以及后剪枝决策树本文使用的Python库包括numpypandasmath

2016-04-04 17:00:22 21228 14

原创 机器学习算法的Python实现 (2):ID3决策树

本文数据参照 机器学习-周志华 一书中的决策树一章。可作为此章课后习题3的答案代码则参照《机器学习实战》一书的内容,并做了一些修改。本文使用的Python库包括numpypandasmathoperatormatplotlib本文所用的数据如下:                  Idx色泽根蒂敲声纹理脐部触感

2016-04-01 22:42:39 20988 32

原创 机器学习算法的Python实现 (1):logistics回归 与 线性判别分析(LDA)

本文为笔者在学习周志华老师的机器学习教材后,写的课后习题的的编程题。之前放在答案的博文中,现在重新进行整理,将需要实现代码的部分单独拿出来,慢慢积累。希望能写一个机器学习算法实现的系列。本文主要包括:1、logistics回归2、线性判别分析(LDA)使用的python库:numpymatplotlibpandas使用的数据集:机器学习教材上的西瓜数

2016-04-01 16:14:16 6477 8

翻译 XGBoost-Python完全调参指南-参数解释篇

关于XGBoost的参数,发现已经有比较完善的翻译了。故本文转载其内容,并作了一些修改与拓展。原文链接见:http://blog.csdn.net/zc02051126/article/details/46711047XGBoost参数XGBoost的参数可以分为三种类型:通用参数、booster参数以及学习目标参数General parameters:参数控制

2016-03-27 22:28:31 91263 3

翻译 XGBoost-Python完全调参指南-介绍篇

在analytics vidhya上看到一篇,写的很好。因此打算翻译一下这篇文章,也让自己有更深的印象。具体内容主要翻译文章的关键意思。原文见:http://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/这篇文章按照原文的分节,共分为三个部

2016-03-26 19:32:21 5325

原创 XGBoost-安装(Windows/VS2015)

昨天想装theano的时候,误删了之前的一些python包,导致xgboost无法使用。索性重新安装了anaconda平台,方便自己后续的使用。 Anaconda是python科学计算的集成。使用起来给人matlab的感觉。并且预装了numpy,scipy,matplotlib,pandas, scikit-learn等多个常用的工具包。 环境:VS2015Win10

2016-03-26 13:47:12 4684 4

原创 opencv学习笔记(二):基于肤色的人手检测(跟踪)程序

最近在做毕业设计,其中一个部分要实现对视频序列中人手位置的跟踪。因此先写了人手的检测程序,下一步基于检测程序再用camshift算法做人手的跟踪。目前完成的程序在我的笔记本上运行大概是一帧80-100ms,直接用检测算法来做跟踪算法其实也马马虎虎可以用了。 开发环境如下:系统:Windows 10IDE:Visual Studio 2013语言:C++算法库:OpenC

2016-03-10 20:29:01 12709 13

转载 Windows下C++ 串口编程实例

原文链接:http://blog.sina.com.cn/s/blog_afb1793101016mq2.html1. 本例子使用了比较规范的软件设计方法,类的设计具有比较好的可扩展性和移植性、代码的注释采用doxgen支持的javaDoc风格。2. 为了能方便初学者更快地了解和入门,几乎每一行代码都加上了详细的注释,对于注释中如果依然有不清楚的概念,相信你通过百度和google一

2016-02-23 15:01:09 39522 14

原创 opencv学习笔记(一):基于YCrCb颜色空间的肤色检测

环境:Windows+VisualStudio2015+ C++ +OpenCV2.7.9之前尝试写过基于HSV颜色空间的肤色识别程序,发现效果不甚理想,环境噪声比较大,而且光照变化时的检测效果不好。正好看到了一篇论文《基于HSV与YCrCb颜色空间进行肤色检测的研究》。里面针对HSV和YCrCb空间的各个通道统计了一组不同光照条件下的肤色图像,得到了如下结果可

2016-02-13 11:58:12 16876 7

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除