153. 寻找旋转排序数组中的最小值

79 篇文章 3 订阅

153. 寻找旋转排序数组中的最小值

已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:

  • 若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
  • 若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]

注意,数组 [a[0], a[1], a[2], …, a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], …, a[n-2]] 。

给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [3,4,5,1,2]
输出:1
解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。

示例 2:

输入:nums = [4,5,6,7,0,1,2]
输出:0
解释:原数组为 [0,1,2,4,5,6,7] ,旋转 4 次得到输入数组。

示例 3:

输入:nums = [11,13,15,17]
输出:11
解释:原数组为 [11,13,15,17] ,旋转 4 次得到输入数组。

提示:
  • n = = n u m s . l e n g t h n == nums.length n==nums.length
  • 1 < = n < = 5000 1 <= n <= 5000 1<=n<=5000
  • − 5000 < = n u m s [ i ] < = 5000 -5000 <= nums[i] <= 5000 5000<=nums[i]<=5000
  • nums 中的所有整数 互不相同
  • nums 原来是一个升序排序的数组,并进行了 1 至 n 次旋转

思路:二分查找

  • 特殊情况,如果旋转次数为0或者刚好为数组的长度,则数组的最后一个数一定大于第一个数
  • 否则,数组的最后一个数一定小于第一个数,且最小值及其右边的值全都小于其左边的值
  • 所以,当 n u m s [ m i d ] > = n u m s [ 0 ] nums[mid] >= nums[0] nums[mid]>=nums[0]时,最小值一定在右边,此时 l = m i d + 1 l = mid + 1 l=mid+1
  • n u m s [ m i d ] < n u m s [ 0 ] nums[mid] < nums[0] nums[mid]<nums[0]时,最小值一定在左边或当前位置,此时 h = m i d h = mid h=mid

代码:(Java)

public class min_rotate {

	public static void main(String[] args) {
		// TODO 自动生成的方法存根
		int [] nums = {2,1};
		System.out.println(findMin(nums));
	}
	public static  int findMin(int[] nums) {
		int l = 0,h = nums.length - 1;
		if(nums[0] < nums[h])
			return nums[0];
		while(l < h) {
			int mid = l + (h - l) / 2;
			if(nums[mid] >= nums[0]) {
				l = mid + 1;
			}else {
				h = mid;
			}
		}
		return nums[l];
    }
}
复杂度分析:
  • 时间复杂度:时间复杂度为 O ( l o g ⁡ n ) O(log⁡n) O(logn),其中 nnn 是数组 n u m s nums nums 的长度。在二分查找的过程中,每一步会忽略一半的区间,因此时间复杂度为 O ( l o g ⁡ n ) O(log⁡n) O(logn)

  • 空间复杂度: O ( 1 ) O(1) O(1)

注:仅供学习参考!

来源:力扣

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酷酷的懒虫

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值