112. 路径总和
给你二叉树的根节点 root
和一个表示目标和的整数 targetSum
。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum
。如果存在,返回 true
;否则,返回 false
。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true
解释:等于目标和的根节点到叶节点路径如上图所示。
示例 2:
输入:root = [1,2,3], targetSum = 5
输出:false
解释:树中存在两条根节点到叶子节点的路径:
(1 --> 2): 和为 3
(1 --> 3): 和为 4
不存在 sum = 5 的根节点到叶子节点的路径。
示例 3:
输入:root = [], targetSum = 0
输出:false
解释:由于树是空的,所以不存在根节点到叶子节点的路径。
提示:
- 树中节点的数目在范围 [0, 5000] 内
- -1000 <= Node.val <= 1000
- -1000 <= targetSum <= 1000
思路:递归
假定从根节点到当前节点的值之和为 val
,我们可以将这个大问题转化为一个小问题:
- 如果当前节点不为叶子节点,则一直往下递归,一直向下找到 叶子节点,传递的目标和要减去当前节点
targetSum - val
; - 如果当前节点为 叶子节点 ,则判断该叶子节点的
val
是否等于targetSum
,如果相等则找到了一条符合要求的路径。 - 从当前节点出发,左右子树一直到叶子节点,只要找到一条符合要求的路径,则返回
true
。
代码:(Java、C++)
Java
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean hasPathSum(TreeNode root, int targetSum) {
if(root == null) return false;
if(root.left == null && root.right == null){
return root.val == targetSum;
}
return hasPathSum(root.left, targetSum - root.val) || hasPathSum(root.right, targetSum - root.val);
}
}
C++
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool hasPathSum(TreeNode* root, int targetSum) {
if(root == NULL) return false;
if(root->left == NULL && root->right == NULL){
return root->val == targetSum;
}
return hasPathSum(root->left, targetSum - root->val) || hasPathSum(root->right, targetSum - root->val);
}
};
运行结果:
复杂度分析:
- 时间复杂度:
O
(
n
)
O(n)
O(n),其中
n
是树的节点数。对每个节点访问一次。 - 空间复杂度:
O
(
h
e
i
g
h
t
)
O(height)
O(height),其中
height
是树的高度。空间复杂度主要取决于递归时栈空间的开销,最坏情况下,树呈现链状,空间复杂度为 O ( n ) O(n) O(n)。平均情况下树的高度与节点数的对数正相关,空间复杂度为 O ( l o g n ) O(logn) O(logn)。
题目来源:力扣。
放弃一件事很容易,每天能坚持一件事一定很酷,一起每日一题吧!
关注我 leetCode专栏,每日更新!