(栈队列堆) 剑指 Offer 40. 最小的k个数 ——【Leetcode每日一题】

文章介绍了在给定整数数组arr中找出最小的k个数的三种方法:排序、使用堆以及快速选择。分别提供了C++和Java的代码实现,并分析了每种方法的时间复杂度。排序的时间复杂度为O(nlogn),堆的方法为O(nlogk),快速选择在最坏情况下为O(n^2)。
摘要由CSDN通过智能技术生成

❓ 剑指 Offer 40. 最小的k个数

难度:简单

输入整数数组 arr ,找出其中最小的 k 个数。例如,输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。

示例 1:

输入:arr = [3,2,1], k = 2
输出:[1,2] 或者 [2,1]

示例 2:

输入:arr = [0,1,2,1], k = 1
输出:[0]

限制

  • 0 < = k < = a r r . l e n g t h < = 10000 0 <= k <= arr.length <= 10000 0<=k<=arr.length<=10000
  • 0 < = a r r [ i ] < = 10000 0 <= arr[i] <= 10000 0<=arr[i]<=10000

💡思路:

法一:排序

对原数组从小到大排序后取出前 k 个数即可。

法二:堆

维护一个大小为 k最小堆过程如下:使用大顶堆

  • 在添加一个元素之后,如果大顶堆 堆顶元素 小于 k ,那么将大顶堆的堆顶元素去除,也就是将当前堆中值最大的元素去除,从而使得留在堆中得元素都比被去除的元素来得小;

法三:快速选择

使用快速排序的 partions()方法!
只有当允许修改数组元素时才可以使用!

快速排序的 partition() 方法,会返回一个整数 j 使得 a[l..j-1] 小于等于 a[j],且 a[j+1..h] 大于等于 a[j],此时 a[j] 就是数组的第 j 大元素。

可以利用这个特性找出数组的第 k 个元素,这种找第 k 个元素的算法称为 快速选择算法

🍁代码:(C++、Java)

法一:排序
C++

class Solution {
public:
    vector<int> getLeastNumbers(vector<int>& arr, int k) {
        vector<int> ans(k);
        if(k > arr.size() || k == 0) return ans;
        sort(arr.begin(), arr.end());
        for (int i = 0; i < k; ++i) {
            ans[i] = arr[i];
        }
        return ans;
    }
};

Java

class Solution {
    public int[] getLeastNumbers(int[] arr, int k) {
        int[] ans = new int[k];
        if(k > arr.length || k == 0) return ans;
        Arrays.sort(arr);
        for (int i = 0; i < k; ++i) {
            ans[i] = arr[i];
        }
        return ans;
    }
}

法二:堆
C++

class Solution {
public:
    vector<int> getLeastNumbers(vector<int>& arr, int k) {
        vector<int> ans(k);
        if(k > arr.size() || k == 0) return ans;
        priority_queue<int> maxHeap;
        for(int num : arr){
            maxHeap.push(num);
            if(maxHeap.size() > k){
                maxHeap.pop();
            }
        }
        for(int i = 0; i < k; i++){
            ans[i] = maxHeap.top();
            maxHeap.pop();
        }
        return ans;
    }
};

Java

class Solution {
    public int[] getLeastNumbers(int[] arr, int k) {
        int[] ans = new int[k];
        if(k > arr.length || k == 0) return ans;
        //Java 的 PriorityQueue 实现了堆的能力,PriorityQueue 默认是小顶堆
        //可以在在初始化时使用 Lambda 表达式 (o1, o2) -> o2 - o1 来实现大顶堆
        PriorityQueue<Integer> maxHeap = new PriorityQueue<>((o1, o2) -> o2 - o1);
        for(int num : arr){
            maxHeap.add(num);
            if(maxHeap.size() > k){
                maxHeap.poll();
            }
        }
        for(int i = 0; i < k; i++){
            ans[i] = maxHeap.poll();
        }
        return ans;
    }

}

法三:快速选择
C++

class Solution {
private:
    void findKthSmallest(vector<int>& arr, int k) {
        int l = 0, h = arr.size() - 1;
        while(l < h){
            int j = partition(arr, l, h);
            if(j == k) break;
            else if(j > k) h = j - 1;
            else l = j + 1;
        }
    }

    int partition(vector<int>& arr, int l, int h) {
        int p = arr[l]; // 选定标兵,划分元素
        int i = l, j = h + 1;
        while(true){
            while(i < h && arr[++i] < p);//在左边找到一个比 p 大的元素
            while(j > l && arr[--j] > p);//在右边找到一个比 p 小的元素
            if(i >= j) break;
            swap(arr[i], arr[j]);
        }
        swap(arr[l], arr[j]);
        return j;
    }

public:
    vector<int> getLeastNumbers(vector<int>& arr, int k) {
        vector<int> ans(k);
        if(k > arr.size() || k == 0) return ans;
        /* findKthSmallest 会改变数组,使得前 k 个数都是最小的 k 个数 */
        findKthSmallest(arr, k - 1);
        for(int i = 0; i < k; i++){
            ans[i] = arr[i];
        }
        return ans;
    }
};

Java

class Solution {
    private void swap(int[] arr, int i, int j){
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }

    private int partition(int[] arr, int l, int h){//划分
        int p = arr[l];
        int i = l, j = h + 1;
        while(true){
            while(i < h && arr[++i] < p);//在左边找到一个比 p 大的元素
            while(j > l && arr[--j] > p);//在右边找到一个比 p 小的元素
            if(i >= j) break;
            swap(arr, i, j);
        }
        swap(arr, l, j);
        return j;
    } 

    private void findKthSmallest(int[] arr, int k) {
        int l = 0, h = arr.length - 1;
        while(l < h){//使得前 k 个数都是最小的 k 个数
            int j = partition(arr, l, h);//划分
            if(j == k) break;
            else if(j > k) h = j - 1;
            else l = j + 1;
        }
    }

    public int[] getLeastNumbers(int[] arr, int k) {
        int[] ans = new int[k];
        if(k > arr.length || k == 0) return ans;
        // findKthSmallest 会改变数组,使得前 k 个数都是最小的 k 个数
        findKthSmallest(arr, k - 1);
        for(int i = 0; i < k; i++){
            ans[i] = arr[i];
        }
        return ans;
    }

}
🚀 运行结果:

在这里插入图片描述

🕔 复杂度分析:

法一:排序

  • 时间复杂度 O ( n l o g n ) O(nlogn) O(nlogn),其中 n 为数组 arr 的长度。算法的时间复杂度即排序的时间复杂度。

  • 空间复杂度 O ( l o g n ) O(logn) O(logn),排序所需额外的空间复杂度为 O ( l o g n ) O(logn) O(logn)

法二:堆

  • 时间复杂度 O ( n l o g k ) O(nlogk) O(nlogk),其中 n 为数组 arr 的长度。由于大根堆实时维护前 k 小值,所以插入删除都是 O ( l o g ⁡ k ) O(log⁡k) O(logk) 的时间复杂度,数组里 n 个数都会插入,所以一共需要 O ( n l o g ⁡ k ) O(nlog⁡k) O(nlogk) 的时间复杂度。
  • 空间复杂度 O ( k ) O(k) O(k)

法三:快速选择

  • 时间复杂度 O ( n ) O(n) O(n),最坏情况下的时间复杂度为 O ( n 2 ) O(n^2) O(n2)。情况最差时,每次的划分点都是最大值或最小值,一共需要划分 n−1 次,而一次划分需要线性的时间复杂度,所以最坏情况下时间复杂度为 O ( n 2 ) O(n^2) O(n2)
  • 空间复杂度 O ( l o g n ) O(logn) O(logn)。递归调用的期望深度为 O ( l o g ⁡ n ) O(log⁡n) O(logn),每层需要的空间为 O ( 1 ) O(1) O(1),只有常数个变量。最坏情况下的空间复杂度为 O ( n ) O(n) O(n)

题目来源:力扣。

放弃一件事很容易,每天能坚持一件事一定很酷,一起每日一题吧!
关注我LeetCode主页 / CSDN—力扣专栏,每日更新!

注: 如有不足,欢迎指正!
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酷酷的懒虫

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值