中心极限定理和Berry-Esseen中心极限定理

中心极限定理

令随机变量 Z ∼ N ( 0 , 1 ) Z \sim \mathcal N(0,1) ZN(0,1),对于独立同分布的随机变量(i.i.d.) X 1 , X 2 , … , X n X_1, X_2, \ldots, X_n X1,X2,,Xn,令 S n = ∑ i X i S_n = \sum_{i} X_i Sn=iXi Z n = S n − E [ S n ] var [ S n ] Z_n=\frac{S_n - \mathbb E[S_n]}{\sqrt {\text{var}[S_n]}} Zn=var[Sn] SnE[Sn],当 n → ∞ n \rightarrow \infty n时,有

Z n → Z ∀ u   Pr [ Z n ≤ u ] → Pr [ Z ≤ u ] Z_n \rightarrow Z \\ \forall u \ \ \text{Pr}[Z_n \leq u] \rightarrow \text{Pr}[Z \leq u] ZnZu  Pr[Znu]Pr[Zu]

或者可以描述为

∀ ϵ > 0 , ∃ N ∈ N ,  for  n > N , u ∈ R ∣ Pr [ Z n ≤ u ] − Pr [ Z ≤ u ] ∣ < ϵ \forall \epsilon > 0, \exist N \in \mathcal N, \text{ for } n>N, u \in \R \\ |\text{Pr}[Z_n \leq u] - \text{Pr}[Z \leq u]| < \epsilon ϵ>0,NN, for n>N,uRPr[Znu]Pr[Zu]<ϵ

然而,在设计和分析算法时,为了性能保证,我们需要知道算法的收敛率(convergence rate),这个时候中心极限定理就不再适用,这就需要Berry-Esseen中心极限定理来具体化误差边界(error bound)。

Berry-Esseen中心极限定理

对于独立的随机变量 X 1 , X 2 , … , X n X_1, X_2, \ldots, X_n X1,X2,,Xn,不失一般性,令 E [ X i ] = 0 \mathbb E[X_i] = 0 E[Xi]=0 var [ X i ] = σ 2 \text{var}[X_i] = \sigma^2 var[Xi]=σ2,并且 ∑ i = 1 n σ 2 = 1 \sum_{i=1}^n \sigma^2 = 1 i=1nσ2=1,让 S = X 1 + … + X n S= X_1 + \ldots + X_n S=X1++Xn(注意到 E [ S ] = 0 \mathbb E[S]=0 E[S]=0 var [ S ] = 1 \text{var}[S]=1 var[S]=1),那么

∀ u ∈ R      ∣ Pr [ S ≤ u ] − Pr ⏟ Z ∼ N ( 0 , 1 ) [ Z ≤ u ] ∣ ≤ O ( 1 ) ⋅ β ,     where  β = ∑ i = 1 n E ∣ X i ∣ 3 \forall u \in \R \ \ \ \ \Big | {\text{Pr}[S \leq u] - \underbrace{\text{Pr}}_{Z \sim\mathcal N(0,1)} [Z \leq u] } \Big | \leq \mathcal O(1) \cdot \beta, \ \ \ \ \text{where } \beta=\sum_{i=1}^n \mathbb E |X_i|^3 uR    Pr[Su]ZN(0,1) Pr[Zu]O(1)β,    where β=i=1nEXi3

注意1: O ( 1 ) → 0.5514 \mathcal O(1) \rightarrow 0.5514 O(1)0.5514 [2]
注意2:Berry-Esseen中心极限定理不要求随机变量 X i ,   ∀ i X_i,\ \forall i Xi, i是同分布的(identical),但是变量之间要求独立。

举例:以AMP最初的假设为例,令随机变量

X i = { + 1 N      w . p . 1 2 − 1 N      w . p . 1 2 X_i=\left\{ \begin{aligned} & +\frac{1}{\sqrt N} \ \ \ \ w.p. \frac{1}{2} \\ & -\frac{1}{\sqrt N} \ \ \ \ w.p. \frac{1}{2} \\ \end{aligned} \right. Xi=+N 1    w.p.21N 1    w.p.21

显然, E [ X i ] = 0 \mathbb E[X_i] = 0 E[Xi]=0 var [ X i ] = 1 N \text{var}[X_i] = \frac{1}{N} var[Xi]=N1,并且 ∑ i = 1 n var [ X i ] = 1 \sum_{i=1}^n \text{var}[X_i] = 1 i=1nvar[Xi]=1,考虑三阶矩, E ∣ X i ∣ 3 = 1 N 3 / 2 \mathbb E |X_i|^3=\frac{1}{N^{3/2}} EXi3=N3/21,因此 β = 1 N \beta = \frac{1}{\sqrt N} β=N 1,根据Berry-Esseen中心极限定理,可以有

∀ u ∈ R      ∣ Pr [ S ≤ u ] − Pr ⏟ Z ∼ N ( 0 , 1 ) [ Z ≤ u ] ∣ ≤ 0.5514 n \forall u \in \R \ \ \ \ \Big | {\text{Pr}[S \leq u] - \underbrace{\text{Pr}}_{Z \sim\mathcal N(0,1)} [Z \leq u] } \Big | \leq \frac{0.5514}{\sqrt n} uR    Pr[Su]ZN(0,1) Pr[Zu]n 0.5514

其中 0.5514 n \frac{0.5514}{\sqrt n} n 0.5514给出了收敛率的表征。

关于Berry-Esseen中心极限定理的证明可以看我写的另一篇博客Berry-Esseen中心极限定理

参考

[1] http://yuanz.web.illinois.edu/teaching/IE498fa19/lec_01_02.pdf
[2] I. G. Shevtsova, “On the absolute constants in the Berry–Esseen inequality and its structural and nonuniform improvements”, Inform. Primen., 7:1 (2013), 124–125

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值