Berry-Essee中心极限定理
令
s
1
,
...
,
s
n
s_1, \text{...}, s_n
s1,...,sn为一组独立的零均值随机变量,假设其二阶矩
E
[
s
i
2
]
=
1
\mathbb E[s^2_i]=1
E[si2]=1,三阶矩有界
E
[
∣
s
i
∣
3
]
≤
C
\mathbb E[|s_i|^3] \leq C
E[∣si∣3]≤C(
C
C
C与
i
i
i独立),则对任意可微的有界函数
ϕ
(
x
)
\phi(x)
ϕ(x),其一阶导也有界,则
E
[
ϕ
(
s
1
+
s
2
+
...
+
s
n
n
)
]
=
E
[
ϕ
(
G
)
]
+
O
(
C
n
(
1
+
sup
∣
ϕ
′
(
x
)
∣
)
)
\mathbb E [\phi(\frac{s_1+s_2+\text{...}+s_n}{\sqrt n})]=\mathbb E[\phi(G)]+\mathcal O \Big (\frac{C}{\sqrt n}(1+\sup |\phi^{'}(x)|) \Big)
E[ϕ(ns1+s2+...+sn)]=E[ϕ(G)]+O(nC(1+sup∣ϕ′(x)∣))
其中 G ∼ N ( 0 , 1 ) G \sim \mathcal N(0,1) G∼N(0,1)。
证明:令
Z
n
=
s
1
+
s
2
+
...
+
s
n
n
Z_n = \frac{s_1+s_2+\text{...}+s_n}{\sqrt n}
Zn=ns1+s2+...+sn,给定
ϕ
(
x
)
\phi(x)
ϕ(x),定义
ϕ
(
x
)
\phi(x)
ϕ(x)的Stein变换为
T
ϕ
(
x
)
=
e
x
2
2
∫
−
∞
x
e
−
y
2
2
(
ϕ
(
y
)
−
E
[
ϕ
(
G
)
]
)
d
y
T_{\phi}(x)=e^{\frac{x^2}{2}} \int_{- \infty}^x e^{- \frac{y^2}{2}} \Big ( \phi(y)-\mathbb E[\phi(G)] \Big ) \text{d}y
Tϕ(x)=e2x2∫−∞xe−2y2(ϕ(y)−E[ϕ(G)])dy
T ϕ ( x ) T_{\phi}(x) Tϕ(x)满足
{ ∃ M 1 > 0 , T ϕ ( x ) < M 1 ∀ x ∃ M 2 > 0 , T ϕ ′ ( x ) < M 2 ∀ x sup x T ϕ ′ ′ ( x ) ≤ sup x T ϕ ′ ( x ) \left\{ \begin{aligned} & \exist M1 >0, \ T_{\phi}(x) < M1 \ \ \forall x \\ &\exist M2 >0, \ T^{'}_{\phi}(x) < M2 \ \ \forall x \\ & \sup _{x} T^{''}_{\phi}(x) \leq \sup _{x} T^{'}_{\phi}(x) \end{aligned} \right. ⎩⎪⎪⎪⎨⎪⎪⎪⎧∃M1>0, Tϕ(x)<M1 ∀x∃M2>0, Tϕ′(x)<M2 ∀xxsupTϕ′′(x)≤xsupTϕ′(x)
可以验证,
T ϕ ′ ( x ) = x T ϕ ( x ) + ( ϕ ( x ) − E [ ϕ ( G ) ] ) T^{'}_{\phi}(x) = xT_{\phi}(x) + \Big ( \phi(x)-\mathbb E[\phi(G)] \Big ) Tϕ′(x)=xTϕ(x)+(ϕ(x)−E[ϕ(G)])
所以
E [ T ϕ ′ ( Z n ) − Z n T ϕ ( Z n ) ] = E [ ϕ ( Z n ) − ϕ ( G ) ] \mathbb E \Big [ T^{'}_{\phi}(Z_n) - Z_n T_{\phi}(Z_n) \Big ]=\mathbb E \Big[ \phi(Z_n) - \phi(G) \Big ] E[Tϕ′(Zn)−ZnTϕ(Zn)]=E[ϕ(Zn)−ϕ(G)]
定义
Z
i
=
Z
n
−
s
i
n
Z_i = Z_n -\frac{s_i}{\sqrt n}
Zi=Zn−nsi,后面经过一些列推导,如下
因此
E [ ϕ ( Z n ) − ϕ ( G ) ] ≤ 4 n sup ∣ ϕ ′ ( x ) ∣ \mathbb E \Big[ \phi(Z_n) - \phi(G) \Big ] \leq \frac{4}{\sqrt n} \sup |\phi^{'}(x)| E[ϕ(Zn)−ϕ(G)]≤n4sup∣ϕ′(x)∣
即,当 n → ∞ n \rightarrow \infty n→∞时, ϕ ( Z n ) → ϕ ( G ) , G ∼ N ( 0 , 1 ) \phi(Z_n) \rightarrow \phi(G), \ G\sim \mathcal N(0,1) ϕ(Zn)→ϕ(G), G∼N(0,1)。