Berry-Esseen中心极限定理

Berry-Essee中心极限定理

s 1 , ... , s n s_1, \text{...}, s_n s1,...,sn为一组独立的零均值随机变量,假设其二阶矩 E [ s i 2 ] = 1 \mathbb E[s^2_i]=1 E[si2]=1,三阶矩有界 E [ ∣ s i ∣ 3 ] ≤ C \mathbb E[|s_i|^3] \leq C E[si3]C C C C i i i独立),则对任意可微的有界函数 ϕ ( x ) \phi(x) ϕ(x),其一阶导也有界,则
E [ ϕ ( s 1 + s 2 + ... + s n n ) ] = E [ ϕ ( G ) ] + O ( C n ( 1 + sup ⁡ ∣ ϕ ′ ( x ) ∣ ) ) \mathbb E [\phi(\frac{s_1+s_2+\text{...}+s_n}{\sqrt n})]=\mathbb E[\phi(G)]+\mathcal O \Big (\frac{C}{\sqrt n}(1+\sup |\phi^{'}(x)|) \Big) E[ϕ(n s1+s2+...+sn)]=E[ϕ(G)]+O(n C(1+supϕ(x)))

其中 G ∼ N ( 0 , 1 ) G \sim \mathcal N(0,1) GN(0,1)

证明:令 Z n = s 1 + s 2 + ... + s n n Z_n = \frac{s_1+s_2+\text{...}+s_n}{\sqrt n} Zn=n s1+s2+...+sn,给定 ϕ ( x ) \phi(x) ϕ(x),定义 ϕ ( x ) \phi(x) ϕ(x)Stein变换
T ϕ ( x ) = e x 2 2 ∫ − ∞ x e − y 2 2 ( ϕ ( y ) − E [ ϕ ( G ) ] ) d y T_{\phi}(x)=e^{\frac{x^2}{2}} \int_{- \infty}^x e^{- \frac{y^2}{2}} \Big ( \phi(y)-\mathbb E[\phi(G)] \Big ) \text{d}y Tϕ(x)=e2x2xe2y2(ϕ(y)E[ϕ(G)])dy

T ϕ ( x ) T_{\phi}(x) Tϕ(x)满足

{ ∃ M 1 > 0 ,   T ϕ ( x ) < M 1    ∀ x ∃ M 2 > 0 ,   T ϕ ′ ( x ) < M 2    ∀ x sup ⁡ x T ϕ ′ ′ ( x ) ≤ sup ⁡ x T ϕ ′ ( x ) \left\{ \begin{aligned} & \exist M1 >0, \ T_{\phi}(x) < M1 \ \ \forall x \\ &\exist M2 >0, \ T^{'}_{\phi}(x) < M2 \ \ \forall x \\ & \sup _{x} T^{''}_{\phi}(x) \leq \sup _{x} T^{'}_{\phi}(x) \end{aligned} \right. M1>0, Tϕ(x)<M1  xM2>0, Tϕ(x)<M2  xxsupTϕ(x)xsupTϕ(x)

可以验证,

T ϕ ′ ( x ) = x T ϕ ( x ) + ( ϕ ( x ) − E [ ϕ ( G ) ] ) T^{'}_{\phi}(x) = xT_{\phi}(x) + \Big ( \phi(x)-\mathbb E[\phi(G)] \Big ) Tϕ(x)=xTϕ(x)+(ϕ(x)E[ϕ(G)])

所以

E [ T ϕ ′ ( Z n ) − Z n T ϕ ( Z n ) ] = E [ ϕ ( Z n ) − ϕ ( G ) ] \mathbb E \Big [ T^{'}_{\phi}(Z_n) - Z_n T_{\phi}(Z_n) \Big ]=\mathbb E \Big[ \phi(Z_n) - \phi(G) \Big ] E[Tϕ(Zn)ZnTϕ(Zn)]=E[ϕ(Zn)ϕ(G)]

定义 Z i = Z n − s i n Z_i = Z_n -\frac{s_i}{\sqrt n} Zi=Znn si,后面经过一些列推导,如下
在这里插入图片描述
因此

E [ ϕ ( Z n ) − ϕ ( G ) ] ≤ 4 n sup ⁡ ∣ ϕ ′ ( x ) ∣ \mathbb E \Big[ \phi(Z_n) - \phi(G) \Big ] \leq \frac{4}{\sqrt n} \sup |\phi^{'}(x)| E[ϕ(Zn)ϕ(G)]n 4supϕ(x)

即,当 n → ∞ n \rightarrow \infty n时, ϕ ( Z n ) → ϕ ( G ) ,   G ∼ N ( 0 , 1 ) \phi(Z_n) \rightarrow \phi(G), \ G\sim \mathcal N(0,1) ϕ(Zn)ϕ(G), GN(0,1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值