>- **🍨 本文为[🔗365天深度学习训练营]中的学习记录博客**
>- **🍖 原作者:[K同学啊]**
🦾我的环境:
- 语言环境:Python3.11.7
- 编译器:jupyter notebook
- 深度学习环境:TensorFlow2.13.0
一、前期工作
1. 设置GPU
如果使用的是CPU可以忽略这步
import tensorflow as tf
gpus=tf.config.list_physical_devices("GPU")
if gpus:
gpu0=gpus[0] #如果有多个GPU,仅使用第0个GPU
tf.config.experimental.set_memory_growth(gpu0,True) #设置GPU显存用量按需使用
tf.config.set_visible_devices([gpu0],"GPU")
gpus
运行结果:
[]
因我的机器未能安装上GPU版本,故无任何显示。
2. 导入数据
import pathlib
data_dir="D:\THE MNIST DATABASE\P4-data"
data_dir=pathlib.Path(data_dir)
3. 查看数据
image_count=len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:",image_count)
运行结果:
图片总数为: 2142
查看图片:
import PIL
Monkeypox=list(data_dir.glob('Monkeypox/*.jpg'))
PIL.Image.open(str(Monkeypox[0]))
运行结果:
二、数据预处理
1. 加载数据
使用image_dataset_from_directory
方法将磁盘中的数据加载到tf.data.Dataset
中
测试集与验证集的关系:
- 验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
- 但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
- 因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集
加载训练集:
batch_size=32
img_height=224
img_width=224
train_ds=tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height,img_width),
batch_size=batch_size
)
运行结果:
Found 2142 files belonging to 2 classes.
Using 1714 files for training.
加载测试集:
val_ds=tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height,img_width),
batch_size=batch_size
)
运行结果:
Found 2142 files belonging to 2 classes.
Using 428 files for validation.
通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。
class_names=train_ds.class_names
print(class_names)
运行结果:
['Monkeypox', 'Others']
2. 可视化数据
import matplotlib.pyplot as plt
plt.figure(figsize=(20,10))
for images,labels in train_ds.take(1):
for i in range(20):
ax=plt.subplot(5,10,i+1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
运行结果:
3. 再次检查数据
for image_batch,labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
运行结果:
(32, 224, 224, 3)
(32,)
Image_batch
是形状的张量(32,224,224,3)。这是一批形状224x224x3的32张图片(最后一维指的是彩色通道RGB)。
Label_batch
是形状(32,)的张量,这些标签对应32张图片
4. 配置数据集
- shuffle() :打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
- prefetch() :预取数据,加速运行
prefetch()
功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()
将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch()
,CPU 和 GPU/TPU 在大部分时间都处于空闲状态:
使用prefetch()
可显著减少空闲时间:
- cache() :将数据集缓存到内存当中,加速运行
AUTOTUNE=tf.data.AUTOTUNE
train_ds=train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds=val_ds.cache().prefetch(buffer_size=AUTOTUNE)
三、构建CNN网络
卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels)
,包含了图像高度、宽度及颜色信息。不需要输入batch size
。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入的形状是 (224, 224, 3)
即彩色图像。我们需要在声明第一层时将形状赋值给参数input_shape
。
网络结构图(可单击放大查看):
from tensorflow.keras import models,layers
num_classes=2
model=models.Sequential([
layers.experimental.preprocessing.Rescaling(1./255,input_shape=(img_height,img_width,3)),
layers.Conv2D(16,(3,3),activation='relu',input_shape=(img_height,img_width,3)),#卷积层1,卷积核3*3
layers.AveragePooling2D((2,2)), #池化层1,2*2采样
layers.Conv2D(32,(3,3),activation='relu'),#卷积层2,卷积核3*3
layers.AveragePooling2D((2,2)), #池化层2,2*2采样
layers.Dropout(0.3),
layers.Conv2D(64,(3,3),activation='relu'), #卷积层3,卷积核3*3
layers.Dropout(0.3),
layers.Flatten(), #Flatten层,连接卷积层与全连接层
layers.Dense(128,activation='relu'), #全连接层,特征进一步提取
layers.Dense(num_classes) #输出层,输出预期结果
])
model.summary()
运行结果:
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
rescaling (Rescaling) (None, 224, 224, 3) 0
conv2d (Conv2D) (None, 222, 222, 16) 448
average_pooling2d (Average (None, 111, 111, 16) 0
Pooling2D)
conv2d_1 (Conv2D) (None, 109, 109, 32) 4640
average_pooling2d_1 (Avera (None, 54, 54, 32) 0
gePooling2D)
dropout (Dropout) (None, 54, 54, 32) 0
conv2d_2 (Conv2D) (None, 52, 52, 64) 18496
dropout_1 (Dropout) (None, 52, 52, 64) 0
flatten (Flatten) (None, 173056) 0
dense (Dense) (None, 128) 22151296
dense_1 (Dense) (None, 2) 258
=================================================================
Total params: 22175138 (84.59 MB)
Trainable params: 22175138 (84.59 MB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________
四、编译
在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:
- 损失函数(loss):用于衡量模型在训练期间的准确率。
- 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
- 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
#设置优化器
opt=tf.keras.optimizers.Adam(learning_rate=1e-4)
model.compile(optimizer=opt,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
五、训练模型
from tensorflow.keras.callbacks import ModelCheckpoint
epochs=50
checkpointer=ModelCheckpoint('best_model.h5',
monitor='val_accuracy',
verbose=1,
save_best_only=True,
save_weithts_only=True)
history=model.fit(train_ds,
validation_data=val_ds,
epochs=epochs,
callbacks=[checkpointer])
运行结果:
Epoch 1/50
54/54 [==============================] - 49s 867ms/step - loss: 0.7176 - accuracy: 0.5537 - val_loss: 0.6785 - val_accuracy: 0.5397
Epoch 2/50
54/54 [==============================] - ETA: 0s - loss: 0.6707 - accuracy: 0.5893
Epoch 2: val_accuracy improved from 0.53972 to 0.60280, saving model to best_model.h5
54/54 [==============================] - 41s 767ms/step - loss: 0.6707 - accuracy: 0.5893 - val_loss: 0.6520 - val_accuracy: 0.6028
……
Epoch 49/50
54/54 [==============================] - ETA: 0s - loss: 0.0469 - accuracy: 0.9872
Epoch 49: val_accuracy did not improve from 0.89486
54/54 [==============================] - 42s 772ms/step - loss: 0.0469 - accuracy: 0.9872 - val_loss: 0.5135 - val_accuracy: 0.8855
Epoch 50/50
54/54 [==============================] - ETA: 0s - loss: 0.0353 - accuracy: 0.9924
Epoch 50: val_accuracy improved from 0.89486 to 0.89720, saving model to best_model.h5
54/54 [==============================] - 42s 785ms/step - loss: 0.0353 - accuracy: 0.9924 - val_loss: 0.4706 - val_accuracy: 0.8972
六、模型评估
1. Loss与Accuracy图
acc=history.history['accuracy']
val_acc=history.history['val_accuracy']
loss=history.history['loss']
val_loss=history.history['val_loss']
epochs_range=range(epochs)
plt.figure(figsize=(12,4))
plt.subplot(1,2,1)
plt.plot(epochs_range,acc,label='Training Accuracy')
plt.plot(epochs_range,val_acc,label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1,2,2)
plt.plot(epochs_range,loss,label='Training Loss')
plt.plot(epochs_range,val_loss,label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
运行结果:
2. 指定图片进行预测
加载模型:
#加载效果最好的模型权重
model.load_weights('best_model.h5')
预测图片:
from PIL import Image
import numpy as np
img=Image.open("D:\THE MNIST DATABASE\P4-data\Monkeypox\M06_01_04.jpg") #选择需要预测的图片
image=tf.image.resize(img,[img_height,img_width])
img_array=tf.expand_dims(image,0)
predictions=model.predict(img_array) #选用已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])
运行结果:
1/1 [==============================] - 0s 111ms/step
预测结果为: Monkeypox
七、心得体会
本周项目的模型搭建中,池化层选择了平均池化,与最大化池化相比,该方法可能会丢失某些最强的特征,但它同时考虑到全局的因素,可以保留更多的特征信息。