第T4周:猴痘病识别

>- **🍨 本文为[🔗365天深度学习训练营]中的学习记录博客**
>- **🍖 原作者:[K同学啊]**

🦾我的环境:

  • 语言环境:Python3.11.7
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.13.0

一、前期工作

1. 设置GPU

如果使用的是CPU可以忽略这步

import tensorflow as tf

gpus=tf.config.list_physical_devices("GPU")

if gpus:
    gpu0=gpus[0]   #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0,True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")
    
gpus

运行结果:

[]

因我的机器未能安装上GPU版本,故无任何显示。

2. 导入数据

import pathlib

data_dir="D:\THE MNIST DATABASE\P4-data"
data_dir=pathlib.Path(data_dir)

3. 查看数据

image_count=len(list(data_dir.glob('*/*.jpg')))

print("图片总数为:",image_count)

运行结果:

图片总数为: 2142

查看图片:

import PIL

Monkeypox=list(data_dir.glob('Monkeypox/*.jpg'))
PIL.Image.open(str(Monkeypox[0]))

运行结果:

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

测试集与验证集的关系:

  1. 验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
  2. 但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
  3. 因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集

加载训练集:

batch_size=32
img_height=224
img_width=224

train_ds=tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height,img_width),
    batch_size=batch_size
)

运行结果:

Found 2142 files belonging to 2 classes.
Using 1714 files for training.

加载测试集:

val_ds=tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height,img_width),
    batch_size=batch_size
)

运行结果:

Found 2142 files belonging to 2 classes.
Using 428 files for validation.

通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names=train_ds.class_names
print(class_names)

运行结果:

['Monkeypox', 'Others']

2. 可视化数据

import matplotlib.pyplot as plt

plt.figure(figsize=(20,10))

for images,labels in train_ds.take(1):
    for i in range(20):
        ax=plt.subplot(5,10,i+1)
        
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

运行结果:

3. 再次检查数据 

for image_batch,labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

运行结果:

(32, 224, 224, 3)
(32,)
  • Image_batch是形状的张量(32,224,224,3)。这是一批形状224x224x3的32张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(32,)的张量,这些标签对应32张图片

4. 配置数据集

  • prefetch() :预取数据,加速运行

prefetch()功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态:

使用prefetch()可显著减少空闲时间: 

  • cache() :将数据集缓存到内存当中,加速运行
AUTOTUNE=tf.data.AUTOTUNE

train_ds=train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds=val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三、构建CNN网络

卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入的形状是 (224, 224, 3)即彩色图像。我们需要在声明第一层时将形状赋值给参数input_shape

网络结构图(可单击放大查看)

from tensorflow.keras import models,layers

num_classes=2

model=models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255,input_shape=(img_height,img_width,3)),
    
    layers.Conv2D(16,(3,3),activation='relu',input_shape=(img_height,img_width,3)),#卷积层1,卷积核3*3
    layers.AveragePooling2D((2,2)), #池化层1,2*2采样
    layers.Conv2D(32,(3,3),activation='relu'),#卷积层2,卷积核3*3
    layers.AveragePooling2D((2,2)), #池化层2,2*2采样
    layers.Dropout(0.3),
    layers.Conv2D(64,(3,3),activation='relu'), #卷积层3,卷积核3*3
    layers.Dropout(0.3),
    
    layers.Flatten(), #Flatten层,连接卷积层与全连接层
    layers.Dense(128,activation='relu'), #全连接层,特征进一步提取
    layers.Dense(num_classes)  #输出层,输出预期结果
])

model.summary()

 运行结果:

Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 rescaling (Rescaling)       (None, 224, 224, 3)       0         
                                                                 
 conv2d (Conv2D)             (None, 222, 222, 16)      448       
                                                                 
 average_pooling2d (Average  (None, 111, 111, 16)      0         
 Pooling2D)                                                      
                                                                 
 conv2d_1 (Conv2D)           (None, 109, 109, 32)      4640      
                                                                 
 average_pooling2d_1 (Avera  (None, 54, 54, 32)        0         
 gePooling2D)                                                    
                                                                 
 dropout (Dropout)           (None, 54, 54, 32)        0         
                                                                 
 conv2d_2 (Conv2D)           (None, 52, 52, 64)        18496     
                                                                 
 dropout_1 (Dropout)         (None, 52, 52, 64)        0         
                                                                 
 flatten (Flatten)           (None, 173056)            0         
                                                                 
 dense (Dense)               (None, 128)               22151296  
                                                                 
 dense_1 (Dense)             (None, 2)                 258       
                                                                 
=================================================================
Total params: 22175138 (84.59 MB)
Trainable params: 22175138 (84.59 MB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

 四、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
#设置优化器
opt=tf.keras.optimizers.Adam(learning_rate=1e-4)

model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

五、训练模型

from tensorflow.keras.callbacks import ModelCheckpoint

epochs=50

checkpointer=ModelCheckpoint('best_model.h5',
                             monitor='val_accuracy',
                             verbose=1,
                             save_best_only=True,
                             save_weithts_only=True)

history=model.fit(train_ds,
                  validation_data=val_ds,
                  epochs=epochs,
                  callbacks=[checkpointer])

 运行结果:

Epoch 1/50
54/54 [==============================] - 49s 867ms/step - loss: 0.7176 - accuracy: 0.5537 - val_loss: 0.6785 - val_accuracy: 0.5397
Epoch 2/50
54/54 [==============================] - ETA: 0s - loss: 0.6707 - accuracy: 0.5893
Epoch 2: val_accuracy improved from 0.53972 to 0.60280, saving model to best_model.h5
54/54 [==============================] - 41s 767ms/step - loss: 0.6707 - accuracy: 0.5893 - val_loss: 0.6520 - val_accuracy: 0.6028
……
Epoch 49/50
54/54 [==============================] - ETA: 0s - loss: 0.0469 - accuracy: 0.9872
Epoch 49: val_accuracy did not improve from 0.89486
54/54 [==============================] - 42s 772ms/step - loss: 0.0469 - accuracy: 0.9872 - val_loss: 0.5135 - val_accuracy: 0.8855
Epoch 50/50
54/54 [==============================] - ETA: 0s - loss: 0.0353 - accuracy: 0.9924
Epoch 50: val_accuracy improved from 0.89486 to 0.89720, saving model to best_model.h5
54/54 [==============================] - 42s 785ms/step - loss: 0.0353 - accuracy: 0.9924 - val_loss: 0.4706 - val_accuracy: 0.8972

六、模型评估

1. Loss与Accuracy图

acc=history.history['accuracy']
val_acc=history.history['val_accuracy']

loss=history.history['loss']
val_loss=history.history['val_loss']

epochs_range=range(epochs)

plt.figure(figsize=(12,4))
plt.subplot(1,2,1)
plt.plot(epochs_range,acc,label='Training Accuracy')
plt.plot(epochs_range,val_acc,label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1,2,2)
plt.plot(epochs_range,loss,label='Training Loss')
plt.plot(epochs_range,val_loss,label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

运行结果:

2. 指定图片进行预测 

加载模型:

#加载效果最好的模型权重
model.load_weights('best_model.h5')

 预测图片:

from PIL import Image
import numpy as np

img=Image.open("D:\THE MNIST DATABASE\P4-data\Monkeypox\M06_01_04.jpg") #选择需要预测的图片
image=tf.image.resize(img,[img_height,img_width])

img_array=tf.expand_dims(image,0)

predictions=model.predict(img_array) #选用已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])

运行结果:

1/1 [==============================] - 0s 111ms/step
预测结果为: Monkeypox
​

七、心得体会

本周项目的模型搭建中,池化层选择了平均池化,与最大化池化相比,该方法可能会丢失某些最强的特征,但它同时考虑到全局的因素,可以保留更多的特征信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值