keras中model.fit()函数

fit( x, y, batch_size=32, epochs=10, verbose=1, callbacks=None, validation_split=0.0, 
validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0)
  • x:输入数据。如果模型只有一个输入,那么x的类型是numpy array,如果模型有多个输入,那么x的类型应当为list,list的元素是对应于各个输入的numpy array

  • y:标签,numpy array

  • batch_size:整数,指定进行梯度下降时每个batch包含的样本数。训练时一个batch的样本会被计算一次梯度下降,使目标函数优化一步。

  • epochs:整数,训练终止时的epoch值,训练将在达到该epoch值时停止,当没有设置initial_epoch时,它就是训练的总轮数,否则训练的总轮数为epochs - inital_epoch
    -verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录

  • callbacks:list,其中的元素是keras.callbacks.Callback的对象。这个list中的回调函数将会在训练过程中的适当时机被调用,参考回调函数

  • validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集将不参与训练,并在每个epoch结束后测试的模型的指标,如损失函数、精确度等。注意,validation_split的划分在shuffle之前,因此如果你的数据本身是有序的,需要先手工打乱再指定validation_split,否则可能会出现验证集样本不均匀。

  • validation_data:形式为(X,y)的tuple,是指定的验证集。此参数将覆盖validation_spilt。

  • shuffle:布尔值或字符串,一般为布尔值,表示是否在训练过程中随机打乱输入样本的顺序。若为字符串“batch”,则是用来处理HDF5数据的特殊情况,它将在batch内部将数据打乱。

  • class_weight:字典,将不同的类别映射为不同的权值,该参数用来在训练过程中调整损失函数(只能用于训练)
    -sample_weight:权值的numpy array,用于在训练时调整损失函数(仅用于训练)。可以传递一个1D的与样本等长的向量用于对样本进行1对1的加权,或者在面对时序数据时,传递一个的形式为(samples,sequence_length)的矩阵来为每个时间步上的样本赋不同的权。这种情况下请确定在编译模型时添加了sample_weight_mode=’temporal’。
    -initial_epoch: 从该参数指定的epoch开始训练,在继续之前的训练时有用。

  • return:fit函数返回一个History的对象,其History.history属性记录了损失函数和其他指标的数值随epoch变化的情况,如果有验证集的话,也包含了验证集的这些指标变化情况

### 回答1: Keras中的model.fit的callbacks是指在训练过程中调用的回调函数。这些回调函数可以用于监控训练过程中的指标,例如损失函数和准确率等。同时,还可以使用回调函数来实现一些特定的功能,例如在训练过程中保存模型、动态调整学习率等。Keras提供了一些常用的回调函数,例如EarlyStopping、ModelCheckpoint、ReduceLROnPlateau等,用户也可以自定义回调函数来满足自己的需求。 ### 回答2: Keras是一种用于深度学习的开源神经网络库,其中model.fit函数是训练模型的核心函数。callbacks参数是在这个函数中用于将对模型的训练过程进行监管的一项机制。下面将详细解释kerasmodel.fit的callbacks参数。 callbacks参数为一个列表,其中每一个元素都是一个回调函数。回调函数是一些在训练模型时被调用的函数,以便于在训练过程中进行一些额外的操作。Keras的回调函数包括:ModelCheckpoint、EarlyStopping、ReduceLROnPlateau等。下面我们分别介绍这些回调函数的作用: ModelCheckpoint回调函数:该回调函数允许在训练过程中保存模型的检查点。在模型训练时,该回调函数会自动保存最好的模型,并且可以在模型下一步训练时继续使用该检查点。 EarlyStopping回调函数:该回调函数在训练过程中监测模型的性能并提供早期停止的机制。如果模型在经过指定的epoch次数后,性能没有改善,则终止模型的训练,以免浪费时间和计算资源。 ReduceLROnPlateau回调函数:该回调函数监测模型的性能,并在性能不再提升时减小模型的学习率,以更好地优化模型的性能。 其他的回调函数还包括ProgressLoggerCallback、TensorBoardCallback等。 总之,callbacks参数提供了一种在训练模型时监督模型性能的方法,它可以帮助我们更好地调整模型,以达到更好的预测结果。在使用Keras训练神经网络时,合理使用callbacks回调函数可以提高模型的性能和训练效率。 ### 回答3: Keras中的model.fit函数是用于训练神经网络模型的函数,其中的callbacks参数可以用于指定在训练过程中回调的一些函数。callbacks函数可以提供在模型训练期间的动态操作,例如在训练期间调整学习率、保存权重等。 常用的callbacks有: 1. EarlyStopping:一旦模型性能不再提高,或者开始过拟合,就会停止训练。可以指定patience参数,即连续几轮模型性能不再提高,就停止训练 2. ModelCheckpoint:在训练过程中,根据给定的监视指标保存模型权重到文件中 3. LearningRateScheduler:可以动态地更改学习率,通常在训练期间逐渐减少学习率,以获得更好的训练效果 4. ReduceLROnPlateau:当监视指标不再提高时自动降低学习率,以获得更好的训练效果 5. CSVLogger:将学习过程中的指标数据记录到CSV文件中,以便后续分析和可视化等操作 6. TensorBoard:将学习过程中的指标数据和模型结构可视化,以帮助模型调参和优化 以上是常用的callbacks函数,用户可以根据需求选择并自定义callbacks函数,以达到更好的训练效果。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值