【MindSpore学习打卡】初学教程-08模型训练-使用MindSpore进行深度学习模型训练

在现代人工智能研究中,深度学习模型的训练是至关重要的一环。MindSpore作为一款开源深度学习框架,提供了丰富的工具和接口,使得模型的训练过程更加简便和高效。本篇博客将详细介绍如何使用MindSpore进行深度学习模型的训练,包括数据集的构建、神经网络模型的定义、超参数的设置、损失函数和优化器的选择,以及最终的模型训练与评估。通过本篇教程,你将能够掌握使用MindSpore进行深度学习模型训练的基本流程和技巧。

1. 构建数据集

首先,我们需要加载数据集。使用MNIST数据集,我们将使用MindSpore提供的MnistDataset来加载数据,并进行一些基本的数据预处理操作,如归一化、类型转换等。

归一化和类型转换是数据预处理的重要步骤,可以提高模型训练的效率和准确性。

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset

# 下载数据
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)

def datapipe(path, batch_size):
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
    label_transform = transforms.TypeCast(mindspore.int32)

    dataset = MnistDataset(path)
    dataset = dataset.map(image_transforms, 'image')
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset

train_dataset = datapipe('MNIST_Data/train', batch_size=64)
test_dataset = datapipe('MNIST_Data/test', batch_size=64)

2. 定义神经网络模型

接下来,我们需要定义一个简单的神经网络模型。在这里,我们使用一个包含全连接层和ReLU激活函数的网络。

全连接层能够有效地提取数据的特征,而ReLU激活函数可以引入非线性特征,使得模型能够学习更复杂的模式。

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()

3. 定义超参、损失函数和优化器

超参

超参是控制模型训练过程的参数,包括训练轮次、批次大小和学习率。

这些参数直接影响模型的训练过程和最终性能。合理的超参数设置可以加速模型的收敛,提高训练效率。

epochs = 3
batch_size = 64
learning_rate = 1e-2

损失函数

我们使用交叉熵损失函数来评估模型的预测值和目标值之间的误差。

交叉熵损失函数和随机梯度下降优化器,这是因为它们在分类任务中表现优异。

loss_fn = nn.CrossEntropyLoss()

优化器

使用随机梯度下降(SGD)优化器来更新模型参数。

optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)

4. 训练与评估

定义训练和测试的循环函数。训练过程中,我们使用函数式自动微分来计算梯度,并通过优化器来更新模型参数。

# 定义正向函数
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits

# 获取梯度函数
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

# 定义单步训练函数
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss

def train_loop(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

def test_loop(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

训练模型

最后,我们将实例化的损失函数和优化器传入训练和测试函数中,训练3轮并输出loss和Accuracy。

for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train_loop(model, train_dataset)
    test_loop(model, test_dataset, loss_fn)
print("Done!")

在这里插入图片描述

  • 8
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值