jupyter notebook或jupyterlab运行于/切换指定的conda虚拟环境或显示所有环境方法


Jupyter 在一个名为 kernel 的单独进程中运行用户的代码。kernel 可以是不同的 Python 安装在不同的 conda 环境或虚拟环境,甚至可以是不同语言(例如 Julia 或 R)的解释器。

如何使用 conda 环境和 Jupyter 有三种方法:

1. 在 conda 环境中运行 Jupyter 服务器和内核

conda create -n my-conda-env   # creates new virtual env
conda activate my-conda-env    # activate environment in terminal
conda install jupyter     # install jupyter + notebook
jupyter notebook       # start server + kernel

这种方法就是为每一个 conda 环境 都安装 jupyter。

Jupyter 将完全安装在 conda 环境中。不同版本的 Jupyter 可用于不同的 conda 环境

2. 为 conda 环境创建特殊内核

conda create -n my-conda-env    # creates new virtual env
conda activate my-conda-env     # activate environment in terminal
conda install ipykernel      # install Python kernel in new conda env
ipython kernel install --user --name=my-conda-env-kernel --display-name 显示名  # configure Jupyter to use Python kernel
jupyter notebook      # run jupyter from system

只有 Python 内核会在 conda 环境中运行,系统中的 Jupyter 或不同的 conda 环境将被使用——它没有安装在 conda 环境中。

通过调用ipython kernel install将 jupyter 配置为使用 conda 环境作为内核.

3. 使用 nb_conda_kernels 添加所有环境

第二种方法其实有个缺点是,你新建一个环境,就要重复操作一次。

而这个方法就是一键添加所有 conda 环境:

conda activate my-conda-env    # this is the environment for your project and code
conda install ipykernel
conda deactivate

conda activate base      # could be also some other environment
conda install nb_conda_kernels
jupyter notebook

注意:这里的 conda install nb_conda_kernels 是在 base 环境下操作的。

安装好后,打开 jupyter notebook 就会显示所有的 conda 环境啦,点击随意切换。
(不显示的话重启电脑试试!)

4. 删除jupyter添加的环境(不包含conda的虚拟环境)

这里需要注意:
上面的第一个方法是在环境里装jupyter;
第二个方法是将指定的conda虚拟环境安装内核并配置给jupyter作为内核;
第三个是安装特殊的内核,会将conda的所有环境自动添加进jupyter中。

这里删除可以删除第二个方法添加的内核(第一个应该也可以,未尝试!):

  1. 查看安装了哪些虚拟环境kernel(在base或虚拟环境下运行都可以):
jupyter kernelspec list
  1. 删除指定的kernel:
jupyter kernelspec uninstall myenv
### 如何配置 Jupyter Lab 使用 Conda 虚拟环境 为了使 Jupyter Lab 支持并使用 Conda 创建的虚拟环境,可以按照以下方法操作: #### 1. 创建 Conda 虚拟环境 可以通过 `conda` 命令来创建一个新的虚拟环境,并在创建过程中直接安装必要的依赖项。例如,在创建名为 `myenv` 的虚拟环境时可以直接安装 Python 和 `ipykernel`[^3]。 ```bash conda create -n myenv python=3.9 ipykernel ``` 此命令会创建一个基于 Python 3.9 的新虚拟环境,并自动安装 `ipykernel`,这是让 Jupyter 认识该虚拟环境的关键组件。 --- #### 2. 激活虚拟环境 激活刚刚创建的虚拟环境以便后续操作能够在此环境中执行。 ```bash conda activate myenv ``` 一旦激活成功,终端提示符前通常会出现 `(myenv)` 表明当前处于 `myenv` 环境下。 --- #### 3. 安装 Ipykernel 并注册到 Jupyter 即使在创建虚拟环境时已经安装了 `ipykernel`,仍需将其显式地添加到 Jupyter 内核列表中。运行如下命令完成这一过程[^4]: ```bash python -m ipykernel install --user --name=myenv --display-name="Python (myenv)" ``` 上述命令的作用是将 `myenv` 注册为 Jupyter 可用的一个内核,其中 `--display-name` 参数定义了在 Jupyter Lab Notebook显示的名字。 --- #### 4. 验证内核是否被正确添加 通过列出所有可用的 Jupyter 内核来确认刚才的操作是否生效。 ```bash jupyter kernelspec list ``` 如果一切正常,则应该能看到类似于下面的结果: ``` Available kernels: myenv /Users/username/.local/share/jupyter/kernels/myenv python3 /usr/local/share/jupyter/kernels/python3 ``` 这意味着新的虚拟环境已经被成功添加到了 Jupyter 的可选内核之中。 --- #### 5. 切换到目标虚拟环境 启动 Jupyter Lab 后,在新建笔记本时可以从右上角菜单选择对应的内核(如 `"Python (myenv)"`)。这样就可以在这个特定的虚拟环境下工作了[^1]。 --- #### 注意事项 - 如果未来不再需要某个虚拟环境作为 Jupyter 的内核,可通过卸载对应内核的方式移除它。 ```bash jupyter kernelspec uninstall myenv ``` - 当频繁使用某些固定目录下的项目时,还可以调整 Jupyter 默认的工作路径以提高效率。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Itfuture03

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值