torch.ones,normal,max

转载
torch.normal(means, std, out=None)
means (Tensor) – 均值
std (Tensor) – 标准差
out (Tensor) – 可选的输出张量


>>> n_data = torch.ones(5, 2)

>>> print(n_data)

tensor([[1., 1.],

        [1., 1.],

        [1., 1.],

        [1., 1.],

        [1., 1.]])

>>> print(n_data.shape)

torch.Size([5, 2])

>>> x0 = torch.normal(2*n_data, 1)

>>> print(x0)

tensor([[3.2688, 1.4834],

        [1.8288, 0.7327],   

        [3.2382, 4.0835],

        [2.8337, 2.1901],

        [3.3097, 2.4447]])

#每个元素是从 均值=2*n_data中对应位置的取值,标准差为1的正态分布中随机生成的

 

>>> print(2*n_data)

tensor([[2., 2.],

        [2., 2.],

        [2., 2.],

        [2., 2.],

        [2., 2.]])

torch.max(参数1, 1)[1]
torch.max()返回两个结果,第一个是最大值,第二个是对应的索引值;第二个参数 0 代表按列取最大值并返回对应的行索引值,1 代表按行取最大值并返回对应的列索引值。
torch.max()[0], 只返回最大值的每个数

troch.max()[1], 只返回最大值的每个索引

torch.max()[1].data 只返回variable中的数据部分(去掉Variable containing:)

torch.max()[1].data.numpy() 把数据转化成numpy ndarry

torch.max()[1].data.numpy().squeeze() 把数据条目中维度为1 的删除掉

torch.max(tensor1,tensor2) element-wise 比较tensor1 和tensor2 中的元素,返回较大的那个值
————————————————
版权声明:本文为CSDN博主「Infinita_LW」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/infinita_LV/article/details/86530655

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值