torch
本笔记引用自PyTorch中文文档
包torch
包含了多维疑是的数据结构及基于其上的多种数学操作。
1. 张量Tensors
torch.is_tensor(obj)
:
如果obj
是一个pytorch
张量,则返回True
torch.is_storage(obj)
:
如果obj
是一个pytorch storage
对象,则返回True
torch.numel(input)
:
返回input
张量中的元素个数。
2. 创建操作
torch.eye(n, m=None, out=None)
:
返回一个2维张量,对角线为1,其它位置为0
- n (int) -行数
- m (int, optional)列数,如果为None,则默认为n
- out (Tensor, optional)
torch.from_numpy(ndarray)
:
将numpy.ndarray
转换为Tensor
,返回的张量tensor和numpy的ndarray共享同一内存空间,修改一个会导致另一个也被修改,返回的张量不能改变大小
torch.linspace(start, end, steps=100, out=None)
:
返回一个1维张量,包含在start
和end
上均匀间隔的steps
个点
- start (float) -序列起点
- end (float) - 序列终点
- steps (int) - 在
start
与end
间生成的样本数 - out (Tensor, optional) - 结果张量
torch.logspace(start, end, steps=100, out=None)
:
返回一个1维张量,包含在区间10exp(start)和10exp(end)上以对数刻度均匀间隔的 steps
个点。
torch.ones(*sizes, out=None)
:
返回一个全为1的张量,形状由可变参数sizes
定义
- sizes (int...) - 整数序列,定义了输出形状
torch.rand(*sizes, out=None)
:
返回一个张量,包含了从区间(0, 1)的均匀分布中抽取的一组随机数,形状由可变参数sizes
定义。
torch.randn(*sizes, out=None)
:
返回一个张量,包含了从标准正态分布(mean=0, std=1)中抽取一组随机数,形状由可变参数sizes
定义。
torch.randperm(n, out=None)
:
给定参数n
,返回一个从0到n-1的随机整数排列
- n (int) - 上边界(不包含)
torch.arange(start, end, step=1, out=None)
:
返回一个1维张量,长度为floor((end-start)/step),以
step`为步长的一组序列值。
- start (float) - 起点
- end (float) - 终点(不包含)
- step (float) - 相邻点的间隔大小
- out (Tensor, optional)
torch.range(start, end, step=1, out=None)
:
还是推荐使用torch.arange()
torch.zeros(*sizes, out=None)
:
返回一个全为标量0的张量,形状由可变参数sizes
定义
3. 索引,切片,连接,换位(Index, Slicing, Joining, Mutating)
torch.cat(inputs, dimension=0)
:
在给定维度上对输入的张量序列seq
进行连接操作。
- inputs (sequence of Tensors)
- dimension (int optional) - 沿着此维连接张量序列
torch.chunk(tensor, chunks, dim=0)
:
在给定维度上将输入张量进行分块
- tensors(Tensors) - 待分场的输入张量
- chunks (int) - 分块的个数
- dim (int) - 沿着此维度
torch.gather(input, dim, index, out=None)
:
沿给定轴dim
,将输入索引张量index
指定位置的值进行聚合。
- input(Tensor) - 源张量
- dim(int) - 索引的轴
- index(LongTensor) - 聚合元素的下标
- out - 目标张量
torch.index_select(input, dim, index, out=None)
:
沿指定维度对输入进行切片,取index
中指定的相应项,然后返回一个新的张量,返回的张量与原始张量有相同的维度(在指定轴上),返回的张量与原始张量不共享内存空间
- input(Tensor) - 输入张量
- dim(int) - 索引的轴
- index(LongTensor) - 包含索引下标的一维张量
- out - 目标张量
torch.masked_select(input, mask, out=None)
:
根据掩码张量mask
中的二元值,取输入张量中的指定项,将取值返回到一个新的1D张量。
张量mask
须跟input
张量有相同的元素数目,但形状或维度不需要相同。返回的张量不与原始张量共享内存空间
- input(Tensor) - 输入张量
- mask(ByteTensor) - 掩码张量,包含了二元索引值
- out - 目标张量
torch.nonzero(input, out=None)
:
返回一个包含输入input
中非零元素索引的张量,输出张量中的每行包含输入中非零元素的索引
若输入input
有n
维,则输出的索引张量output
形状为z * n, 这里z是输入张量input
中所有非零元素的个数
- input(Tensor) - 输入张量
- out - 包含索引值的结果张量
torch.split(tensor, split_size, dim=0)
:
将输入张量分割成相等形状的chunks(如果可分)。如果沿指定维的张量形状大小不能被split_size
整分,则最后一个分块会小于其它分块。
- tensor(Tensor) - 待分割张量
- split_size(int) - 单个分块的形状大小
- dim(int) - 沿着此维进行分割
torch.squeeze(input, dim=None, out=None)
:
将输入张量形状中的1
去除并返回,如果输入是形如(A * 1 * B * 1 * C * 1 *D),那么输出形状就为:(A * B * C * D)。
当给定dim
时,则只在给定维度上进行挤压,如输入形状为(A * 1 * B),squeeze(input, 0)
,将会保持张量不变,只有用