pytorch CON2D

class torch.nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True)

输入: (N,C_in,L_in)
输出: (N,C_out,L_out)
输入输出的计算方式:
L o u t = f l o o r ( ( L i n + 2 p a d d i n g − d i l a t i o n ( k e r n e r l s i z e − 1 ) − 1 ) / s t r i d e + 1 ) L_{out}=floor((L_{in}+2padding-dilation(kernerl_size-1)-1)/stride+1) Lout=floor((Lin+2paddingdilation(kernerlsize1)1)/stride+1)
dilation表示卷积核各个元素之间的膨胀大小,间隔大小,默认为1
在这里插入图片描述
class torch.nn.MaxPool2d(
kernel_size,
stride=None, #默认值是kernel_size
padding=0,
dilation=1,
return_indices=False,
ceil_mode=False)

shape:
输入: (N,C,H_{in},W_in)
输出: (N,C,H_out,W_out)
H o u t = f l o o r ( ( H i n + 2 p a d d i n g [ 0 ] − d i l a t i o n [ 0 ] ( k e r n e l s i z e [ 0 ] − 1 ) − 1 ) / s t r i d e [ 0 ] + 1 H_{out}=floor((H_{in} + 2padding[0] - dilation[0](kernel_size[0] - 1) - 1)/stride[0] + 1 Hout=floor((Hin+2padding[0]dilation[0](kernelsize[0]1)1)/stride[0]+1

W o u t = f l o o r ( ( W i n + 2 p a d d i n g [ 1 ] − d i l a t i o n [ 1 ] ( k e r n e l s i z e [ 1 ] − 1 ) − 1 ) / s t r i d e [ 1 ] + 1 W_{out}=floor((W_{in} + 2padding[1] - dilation[1](kernel_size[1] - 1) - 1)/stride[1] + 1 Wout=floor((Win+2padding[1]dilation[1](kernelsize[1]1)1)/stride[1]+1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值