Fashion MNIST数据集介绍及下载

Fashion MNIST(服饰数据集)的作用是经典MNIST数据集的简易替换,MNIST数据集包含手写数字(阿拉伯数字)的图像,两者图像格式及大小都相同。Fashion MNIST比常规 MNIST手写数据将更具挑战性。两者数据集都较小,主要适用于初学者学习或验证某个算法可否正常运行。他们是测试和调试代码的良好起点。

Fashion MNIST/服饰数据集包含70000张灰度图像,其中包含60,000个示例的训练集和10,000个示例的测试集,每个示例都是一个28x28灰度图像,分为以下几类:

LabelDescription
0T恤(T-shirt/top)
1裤子(Trouser)
2套头衫(Pullover)
3连衣裙(Dress)
4外套(Coat)
5凉鞋(Sandal)
6衬衫(Shirt)
7运动鞋(Sneaker)
8包(Bag)
9靴子(Ankle boot)

Fashion MNIST源地址
直接下载:分别点击图中四个蓝色Download即可下载
在这里插入图片描述

使用Python加载数据(需要NumPy)

import mnist_reader
X_train, y_train = mnist_reader.load_mnist('data/fashion', kind='train')
X_test, y_test = mnist_reader.load_mnist('data/fashion', kind='t10k')

使用Tensorflow加载数据

from tensorflow.examples.tutorials.mnist import input_data
data = input_data.read_data_sets('data/fashion')
data.train.next_batch(BATCH_SIZE)#第一种方法

data = input_data.read_data_sets('data/fashion', source_url='http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/')#,第二种方法,引入网址下载

使用git下载

git clone git@github.com:zalandoresearch/fashion-mnist.git
Fashion-MNIST数据集可以通过多种方式进行下载。基于Python语言的下载方法可以使用utils/mnist_reader库来下载,具体代码如下: ``` import mnist_reader X_train, y_train = mnist_reader.load_mnist('data/fashion', kind='train') X_test, y_test = mnist_reader.load_mnist('data/fashion', kind='t10k') ``` 基于Tensorflow的下载方法可以使用tensorflow.examples.tutorials.mnist库来下载,具体代码如下: ``` from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets('data/fashion') data.train.next_batch(BATCH_SIZE) ``` 另外,你也可以手动下载FashionMNIST数据集。具体代码如下: ``` import torchvision.datasets as datasets import torchvision.transforms as transforms transform = transforms.ToTensor() fashion_train = datasets.FashionMNIST(root=r'G:\D2L\fashion_mnist', train=True, download=True, transform=transform) fashion_test = datasets.FashionMNIST(root=r'G:\D2L\fashion_mnist', train=False, download=True, transform=transform) ``` 以上是三种常用的下载Fashion-MNIST数据集的方法。你可以根据自己的需求选择其中一种方法进行下载。 #### 引用[.reference_title] - *1* *2* [Dataset之Fashion-MNISTFashion-MNIST数据集简介与下载](https://blog.csdn.net/qq_46092061/article/details/119617811)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [FashionMNIST数据下载和显示数据](https://blog.csdn.net/weixin_45146080/article/details/123694164)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值