指定区间离散化

有时可以直接根据业务特征对数据进行离散化,指定需要分区的区间或数据点,形成最终的标记数据。
假设有一组数据:
a = [1,3,7,10,23,50],
以10,30为分割点,将数据分为三个区间。

不指定区间名称

import pandas as pd
a =   [1,3,7,10,23,50]
cut_a = pd.cut(a,[0,10,30,50])
[(0, 10], (0, 10], (0, 10], (0, 10], (10, 30], (30, 50]]
Categories (3, interval[int64]): [(0, 10] < (10, 30] < (30, 50]]

指定区间名称

import pandas as pd
a = [1,3,7,10,23,50]
cut_a = pd.cut(a,[0,10,30,50],labels=[1,2,3])
[1, 1, 1, 1, 2, 3]
Categories (3, int64): [1 < 2 < 3]

指定区间左闭

import pandas as pd
a =   [1,3,7,10,23,50]
cut_a = pd.cut(a,[0,10,30,50],right=False)
[[0.0, 10.0), [0.0, 10.0), [0.0, 10.0), [10.0, 30.0), [10.0, 30.0), NaN]
Categories (3, interval[int64]): [[0, 10) < [10, 30) < [30, 50)]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值