C++ STL中的Binary search(二分查找)

本文详细介绍了C++ STL中的二分查找函数binary_search、lower_bound和upper_bound的使用方法,包括从有序数组和向量中查找特定元素或寻找插入位置。通过实例代码展示了如何在不同排序条件下进行查找,并强调理解这些函数内部实现的重要性。
摘要由CSDN通过智能技术生成

C++ STL中的Binary search(二分查找)

lower_bound( begin,end,num):从数组的begin位置到end-1位置二分查找第一个大于或等于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。

upper_bound( begin,end,num):从数组的begin位置到end-1位置二分查找第一个大于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。

在从大到小的排序数组中,重载lower_bound()和upper_bound()

lower_bound( begin,end,num,greater<type>() ):从数组的begin位置到end-1位置二分查找第一个小于或等于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。

upper_bound( begin,end,num,greater<type>() ):从数组的begin位置到end-1位置二分查找第一个小于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。

#include<bits/stdc++.h>
using namespace std;
const int maxn=100000+10;
const int INF=2*int(1e9)+10;
#define LL long long
int cmd(int a,int b){
	return a>b;
}
int main(){
	int num[6]={1,2,4,7,15,34}; 
	sort(num,num+6);                           //按从小到大排序 
	int pos1=lower_bound(num,num+6,7)-num;    //返回数组中第一个大于或等于被查数的值 在数组num中的下标位置
	int pos2=upper_bound(num,num+6,7)-num;    //返回数组中第一个大于被查数的值 在数组num中的下标位置
	cout<<pos1<<" "<<num[pos1]<<endl;
	cout<<pos2<<" "<<num[pos2]<<endl;
	sort(num,num+6,cmd);                      //按从大到小排序
	int pos3=lower_bound(num,num+6,7,greater<int>())-num;  //返回数组中第一个小于或等于被查数的值 在数组num中的下标位置
	int pos4=upper_bound(num,num+6,7,greater<int>())-num;  //返回数组中第一个小于被查数的值 在数组num中的下标位置
	cout<<pos3<<" "<<num[pos3]<<endl;
	cout<<pos4<<" "<<num[pos4]<<endl;
	return 0;	
} 

vector数组同理:

#include<bits/stdc++.h>
 
using namespace std;
 
int main()
{
	vector <int >v;
//	vector <int >v(5);创建5个为0的容器; (5,1)创建5个为1的容器 
	for(int i=1;i<=5;i++)
		v.push_back(i);
	int pos=lower_bound(v.begin(),v.end(),2)-v.begin();
	cout<<pos<<endl;
	return 0;
}
// 返回的是大于等于2的元素的下标

一.解释
  以前遇到二分的题目都是手动实现二分,不得不说错误比较多,关于返回值,关于区间的左闭右开等很容易出错,最近做题发现直接使用STL中的二分函数方便快捷还不会出错,不过对于没有接触过的同学,二分函数确实是一个头疼的部分,自己查的内容又有点乱,找不到具体的使用方法,有必要自己总结一份完整的以后备用。
二.常用操作
1.头文件

# include <algorithm>

2.使用方法
a.binary_search:查找某个元素是否出现。
a.函数模板:binary_search(arr[],arr[]+size , indx)

b.参数说明:
arr[]: 数组首地址
size:数组元素个数
indx:需要查找的值

c.函数功能: 在数组中以二分法检索的方式查找,若在数组(要求数组元素非递减)中查找到indx元素则真,若查找不到则返回值为假。

2.lower_bound:查找第一个大于或等于某个元素的位置。
a.函数模板:lower_bound(arr[],arr[]+size , indx):
b.参数说明:
arr[]: 数组首地址
size:数组元素个数
indx:需要查找的值
c.函数功能: 函数lower_bound()在first和last中的前闭后开区间进行二分查找,返回大于或等于val的第一个元素位置(注意是地址,而不是单纯的数组下标)。如果所有元素都小于val,则返回last的位置
d.举例如下:
  一个数组number序列为:4,10,11,30,69,70,96,100.设要插入数字3,9,111.pos为要插入的位置的下标,则
  注意因为返回值是一个指针,所以减去数组的指针就是int变量了
  pos = lower_bound( number, number + 8, 3) - number,pos = 0.即number数组的下标为0的位置。
  pos = lower_bound( number, number + 8, 9) - number, pos = 1,即number数组的下标为1的位置(即10所在的位置)。
  pos = lower_bound( number, number + 8, 111) - number, pos = 8,即number数组的下标为8的位置(但下标上限为7,所以返回最后一个元素的下一个元素)。
e.注意:函数lower_bound()在first和last中的前闭后开区间进行二分查找,返回大于或等于val的第一个元素位置。如果所有元素都小于val,则返回last的位置,且last的位置是越界的!

返回查找元素的第一个可安插位置,也就是“元素值>=查找值”的第一个元素的位置

3.upper_bound:查找第一个大于某个元素的位置。
a.函数模板:upper_bound(arr[],arr[]+size , indx):
b.参数说明:
arr[]: 数组首地址
size:数组元素个数
indx:需要查找的值
c.函数功能:函数upper_bound()返回的在前闭后开区间查找的关键字的上界,返回大于val的第一个元素位置
  例如:一个数组number序列1,2,2,4.upper_bound(2)后,返回的位置是3(下标)也就是4所在的位置,同样,如果插入元素大于数组中全部元素,返回的是last。(注意:数组下标越界)
  返回查找元素的最后一个可安插位置,也就是“元素值>查找值”的第一个元素的位置 。

三、代码

#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
    int a[100]= {4,10,11,30,69,70,96,100};
    int b=binary_search(a,a+9,4);//查找成功,返回1
    cout<<"在数组中查找元素4,结果为:"<<b<<endl;
    int c=binary_search(a,a+9,40);//查找失败,返回0
    cout<<"在数组中查找元素40,结果为:"<<c<<endl;
    int d=lower_bound(a,a+9,10)-a;
    cout<<"在数组中查找第一个大于等于10的元素位置,结果为:"<<d<<endl;
    int e=lower_bound(a,a+9,101)-a;
    cout<<"在数组中查找第一个大于等于101的元素位置,结果为:"<<e<<endl;
    int f=upper_bound(a,a+9,10)-a;
    cout<<"在数组中查找第一个大于10的元素位置,结果为:"<<f<<endl;
    int g=upper_bound(a,a+9,101)-a;
    cout<<"在数组中查找第一个大于101的元素位置,结果为:"<<g<<endl;
}

这几天复习算法设计与分析,看到了大一时候做acm题最喜欢投机取巧用一些库函数,这几年学习越来越发现会用工具当然好,但最好还是得明白内部是如何实现的,即使是这样一个简单的二分排序,大一的时候还真不能手写出来,这里将二分搜索的代码贴出了,并给出一个递归实现的版本。

#include <cstdio>
#include <algorithm>
using namespace std;
int a[100]= {4,10,11,30,69,70,96,100};
int binarySearch(int x,int n)
{
    int left =0;
    int right=n-1;
    while(left<=right)
    {
        int mid =(left+right)/2;
        if(x==a[mid])
        {
            return mid;
        }
        if(x>a[mid])
        {
            left=mid+1;
        }
        else
        {
            right =mid-1;
        }
    }
    return -1;//未找到x
}
//二分搜索递归实现
int recurisonBinarySearch(int left,int right,int x)
{
    if(left>right)
    {
        return -1;
    }
    int mid =(left+right)/2;
    if(x==a[mid])
    {
        return mid;
    }
    if(x>a[mid])
    {
        return recurisonBinarySearch(mid+1,right,x);
    }
    else
    {
        return recurisonBinarySearch(left,mid-1,x);
    }
}
int main()
{
    int x;
    int ans1,ans2;
    scanf("%d",&x);
    ans1=binarySearch(x,8);
    ans2=recurisonBinarySearch(0,7,x);
    printf("%d %d\n",ans1,ans2);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值