# http://github.com/wesm/pydata-book 数据文件和相关材料
'''
本书关注的是利用Python操作、处理、清洗和操作数据的基本要点。
当搭建高并发多线程应用,尤其是多CPU绑定线程时,使用Python则会为一项挑战,原因在于Python拥有全局解释器锁,这是
一种防止解释器同时执行多个Python指令的机制。
'''
# 1.Numpy (http://numpy.org)
'''
Python数值计算的基石,它提供多种数据结构,算法以及大部分涉及Python数值计算所需的接口。
Numpy的另一个主要用途是在算法和库之间传递的数据容器。
'''
# 2.Pandas (http://pandas.pyda ta.org)
'''
pandas提供了高级数据结构和函数,这些数据结构和函数的设计使得利用结构化、表格化数据的工作快速、简单、有表现力。
pandas将表格和关系型数据库的灵活操作能力和Numpy的高性能数组计算的理念相结合。
'''
# 3.matplotlib (http://matplotlib.org)
'''
是最流行的用于制图及其他二维数据可视化的Python库。
'''
# 4.scipy (http://Scipy.org)
'''
科学计算领域针对不同标准问题域的包集合。
'''
# 5.scikit-Learn (http://scikit-learn.org)
'''
机器学习工具包
'''
# 6.statsmodels (http://statsmodels.org)
'''
statsmodels更专注于统计推理,提供不确认性评价和p值参数,相反、scikit-learn更专注于预测。
'''
# 7. 安装更新Python包
'''
pip install package_name
pip install --upgrade package_name
'''
利用python进行数据分析—第一章笔记
最新推荐文章于 2024-09-09 17:17:45 发布