面试题47. 礼物的最大价值

在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

示例 1:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物

思路:动态规划

使用二维数组(简单易想)dp储存中间结果,数组中坐标(i,j)的元素表示到达坐标为(i,j)的格子时能拿到的礼物价值总和的最大值。

根据题目的要求,有两种可能的途径到达坐标为(i,j)的格子:通过(i,j-1)或(i-1,j),也就是从左到右(left)或者从上到下(up),所以dp[i][j]=max(dp[i-1][j], dp[i][j-1])+grid[i][j],其中grid[i][j]表示坐标为(i,j)的格子里礼物的价值。

class Solution:
    class Solution:
    def maxValue(self, grid: List[List[int]]) -> int:
        rows = len(grid)
        cols = len(grid[0])
        dp = [[0 for _ in range(cols)] for _ in range(rows)]
        dp[0][0]=grid[0][0]

        for i in range(1,rows):
            dp[i][0] = dp[i-1][0] + grid[i][0]
        for i in range(1,cols):
            dp[0][i] = dp[0][i-1] + grid[0][i]

        for i in range(1,rows):
            for j in range(1,cols):
                up = dp[i - 1][j]
                left = dp[i][j - 1]
                dp[i][j] = max(left, up) + grid[i][j]
        return dp[-1][-1]

来源:leetcode

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值