【论文速读】Prompt Tuning:The Power of Scale for Parameter-Effificient Prompt Tuning

arxiv:2104.08691v2

摘要

在这项工作中,我们探索了“prompt tuning(提示调优)”,这是一种简单而有效的机制,用于学习“soft prompts(软提示)”,以条件下冻结的语言模型来执行特定的下游任务。**与GPT-3使用的离散文本提示不同,软提示是通过反向传播来学习的,并且可以进行调优,以合并来自任意数量的标记示例的信号。**我们的端到端学习方法比GPT-3的少量镜头学习效果更好。更值得注意的是,通过使用T5对模型大小进行消融,我们证明了提示调优随着规模的增加而变得更有竞争力:随着模型超过数十亿参数,我们的方法“缩小差距”,并匹配模型调优的强大性能(其中所有模型权重都被调优)。这一发现特别相关,因为大型模型的共享和服务成本很高,而为多个下游任务重用一个冻结模型的能力可以减轻这种负担。我们的方法可以看作是对Li和Liang(2021)最近提出的“前缀调优”的简化,并与这种方法和其他类似的方法进行了比较。最后,我们展示了使用软提示条件处理冻结模型有利于域转移的鲁棒性,并能够实现高效的“提示集成”。

导言

  • ELMo(Peters et al.,2018)提出冻结预先训练好的模型,并学习其每层表示的任务特定权重。

  • GPT和BERT主导的适应技术是模型调整(或“微调”),在适应过程中所有模型参数都被调整

  • T5的标准模型调优实现了很强的性能,但需要为每个结束任务存储单独的单独副本。

最近,Brown等人(2020)表明,prompt design(提示设计)(或“priming”)通过文本提示调节冻结的GPT-3模型的行为是惊人的有效的。提示通常由一个任务描述和/或几个规范示例组成。这种对“冻结”预训练模型的回归是很有吸引力的,特别是随着模型规模的不断增加。一个单一的通用模型可以同时服务于许多不同的任务,而不是为每个下游任务需要一个单独的模型副本。

在这里插入图片描述

不幸的是,基于提示的适应有几个关键的缺点。任务描述容易出错,需要人类的参与,而提示的有效性受到模型输入中有多少条件反射文本的限制。因此,下游任务的质量仍然远远落后于调优后的模型。

在本文中,我们提出了prompt tuning(提示调优),作为自适应语言模型的进一步简化。我们冻结了整个预先训练过的模型,并且只允许每个下游任务在输入文本中添加额外的k个可调标记。这种“soft prompt(软提示)”是端到端训练的,可以压缩来自完整标记数据集的信号,使我们的方法优于few-shot prompts,并通过模型调优缩小质量差距。与此同时,由于单个预先训练过的模型可以被循环用于所有下游任务,因此我们保留了冻结模型的有效服务好处。

总之,我们的主要贡献是:

  1. 在大型语言模型体系中提出快速调优并显示其与模型调优的竞争力。

  2. 去除许多设计选择,并显示质量和鲁棒性随着规模的扩大而提高。

  3. 在域移位问题上,prompt tuning调优优于模型调优。

  4. 提出“prompt ensembling(提示集成)”,并显示其有效性。

Prompt Tuning

遵循T5的“text-to-text”方法,我们将所有任务转换为文本生成。我们不是将分类建模为给定一些输入的输出类的概率, P r ( y ∣ X ) Pr(y|X) PryX,其中X是一系列标记,y是一个单一的类标签,我们现在将其建模为条件生成,其中Y是一个表示类标签的token序列。T5模型分类为 P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值