以下都是自己读的,有错误理解的地方请大家留言指出!
【毕竟学术无错 (_) 逃~】
看懂这个代码逻辑还是需要了解pytorch的经验,我就没有苟了好久/(ㄒoㄒ)/~~
train层
from __future__ import division
from __future__ import print_function
import os
import glob
import time
import random
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from utils import load_data, accuracy
from models import GAT, SpGAT
# Training settings
# 实例化一个解析对象parser
parser = argparse.ArgumentParser()
# 添加一系列默认的超参
# 辨识没有GPU的情况
parser.add_argument('--no-cuda', action='store_true', default=False, help='Disables CUDA training.')
parser.add_argument('--fastmode', action='store_true', default=False, help='Validate during training pass.')
# 这里判断的是是否输入为稀疏矩阵
parser.add_argument('--sparse', action='store_true', default=False, help='GAT with sparse version or not.')
# 随机数种子?
parser.add_argument('--seed', type=int, default=72, help='Random seed.')
# 默认epoch轮
parser.add_argument('--epochs', type=int, default=10000, help='Number of epochs to train.')
# 默认学习速率
parser.add_argument('--lr', type=float, default=0.005, help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='Weight decay (L2 loss on parameters).')
# 8个隐藏层
parser.add_argument('--hidden', type=int, default=8, help='Number of hidden units.')
# 注意力的头数
parser.add_argument('--nb_heads', type=int, default=8, help='Number of head attentions.')
# 抓包每次0.6
parser.add_argument('--dropout', type=float, default=0.6, help='Dropout rate (1 - keep probability).')
# 激活函数里面的alpha
parser.add_argument('--alpha', type=float, default=0.2, help='Alpha for the leaky_relu.')
# 能够忍受的最多多少次没有任何优化
parser.add_argument('--patience', type=int, default=100, help='Patience')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
# 产生随机数,导入随机数种子
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
# Load data,加载和预处理数据
adj, features, labels, idx_train, idx_val, idx_test = load_data()
# Model and optimizer
# 建立模型和优化,这里是adam优化。对于特征是否稀疏给与了两种模型
if args.sparse:
# 调用init函数,初始化搭建好模型
model = SpGAT(nfeat=features.shape[1],
nhid=args.hidden,
nclass=int(labels.max()) + 1,
dropout=args.dropout,
nheads=args.nb_heads,
alpha=args.alpha)
else:
# 调用init函数,初始化搭建好模型
model = GAT(nfeat=features.shape[1],
nhid=args.hidden,
nclass=int(labels.max()) + 1,
dropout=args.dropout,
nheads=args.nb_heads,
alpha=args.alpha)
# 定义梯度下降模型
optimizer = optim.Adam(model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay)
# 是否可以用显卡驱动
if args.cuda:
model.cuda()
features = features.cuda()
adj = adj.cuda()
labels = labels.cuda()
idx_train = idx_train.cuda()
idx_val = idx_val.cuda()
idx_test = idx_test.cuda()
# Variable()把向量转换为可变换的变量,即可以用来反向传播
features, adj, labels = Variable(features), Variable(adj), Variable(labels)
def train(epoch):
# 记录训练开始时间
t = time.time()
# 训练模型
model.train()
# 优化
optimizer.zero_grad()
# Attention!在初始化结束后得到的model进行调用模型,此时调用的是forward函数,输入是零阶矩阵和特征编码
output = model(features, adj)
# 获得训练的损失值
loss_train = F.nll_loss(output[idx_train], labels[idx_train])
# 获得正确率
acc_train = accuracy(output[idx_train], labels[idx_train])
loss_train.backward()
optimizer.step()
if not args.fastmode:
# Evaluate validation set performance separately,
# deactivates dropout during validation run.
model.eval()
output = model(features, adj)
# 获得损失和准确性
loss_val = F.nll_loss(output[idx_val], labels[idx_val])
acc_val = accuracy(output[idx_val], labels[idx_val])
# output the information
print('Epoch: {:04d}'.format(epoch+1),
'loss_train: {:.4f}'.format(loss_train.data.item()),
'acc_train: {:.4f}'.format(acc_train.data.item()),
'loss_val: {:.4f}'.format(loss_val.data.item()),
'acc_val: {:.4f}'.format(acc_val.data.item()),
'time: {:.4f}s'.format(time.time() - t))
return loss_val.data.item()
def compute_test():
model.eval()
output = model(features, adj)
loss_test = F.nll_loss(output[idx_test], labels[idx_test])
acc_test = accuracy(output[idx_test], labels[idx_test])
print("Test set results:",
"loss= {:.4f}".format(loss_test.item()),
"accuracy= {:.4f}".format(acc_test.item()))
# Train model
t_total = time.time()
loss_values = []
bad_counter = 0
# 记录每次的损失值
best = args.epochs + 1
# 记录下最好的一次epoch
best_epoch = 0
for epoch in range(args.epochs):
# 记录每轮损失值
loss_values.append(train(epoch))
# 永久化存储model
torch.save(model.state_dict(), '{}.pkl'.format(epoch))
# 讲小于目前最小损失的轮数进行存储
if loss_values[-1] < best:
best = loss_values[-1]
best_epoch = epoch
bad_counter = 0
else:
bad_counter += 1
# 连续100次没有优化直接停。
if bad_counter == args.patience:
break
# 更改永久存储的文件名与内容
files = glob.glob('*.pkl')
for file in files:
epoch_nb = int(file.split('.')[0])
if epoch_nb < best_epoch:
os.remove(file)
files = glob.glob('*.pkl')
for file in files:
epoch_nb = int(file.split('.')[0])
if epoch_nb > best_epoch:
os.remove(file)
#训练完成,输出参数
print("Optimization Finished!")
print("Total time elapsed: {:.4f}s".format(time.time() - t_total))
# Restore best model
print('Loading {}th epoch'.format(best_epoch))
model.load_state_dict(torch.load('{}.pkl'.format(best_epoch)))
torch.save(model, '{}.pth'.format(epoch))
# 测试
compute_test()
utils层 主要是数据处理
import numpy as np
import scipy.sparse as sp
import torch
def encode_onehot(labels):
classes = set(labels)
classes_dict = {c: np.identity(len(classes))[i, :] for i, c in enumerate(classes)}
labels_onehot = np.array(list(map(classes_dict.get, labels)), dtype=np.int32)
return labels_onehot
def load_data(path="./data/cora/", dataset="cora"):
"""Load citation network dataset (cora only for now)"""
print('Loading {} dataset...'.format(dataset))
# genfromtxt 从txt文件中读取数据。Cora数据是文献之间的引用网络。
idx_features_labels = np.genfromtxt("{}{}.content".format(path, dataset), dtype=np.dtype(str))
# read data,上面的数据是【id features label】,所以这里直接读的全是features
features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32)
print(features)
print("hi")
# 对标志进行one0hot编码
labels = encode_onehot(idx_features_labels[:, -1])
# build graph 存图,首先是将数据第一列paper_id读取出来,然后最后一段是论文分类标志
idx = np.array(idx_features_labels[:, 0], dtype=np.int32)
# 枚举所有的idx,将i,j组成map,对所有的文献id进行编号
idx_map = {j: i for i, j in enumerate(idx)}
# 从cite读取所有的无序边信息,该文件里存储的是全部的引用关系,前者是被引用,后者是引用
edges_unordered = np.genfromtxt("{}{}.cites".format(path, dataset), dtype=np.int32)
# 将cite文件里面未排序边的文献id对应为map里面的id,转换为在有序编号id之间建立的边的关系
# map以前者的函数作用于后者的迭代数据
edges = np.array(list(map(idx_map.get, edges_unordered.flatten())), dtype=np.int32).reshape(edges_unordered.shape)
# print(adj.multiply)的out为
# <bound method spmatrix.multiply of <2708x2708 sparse matrix of type '<class 'numpy.float32'>'
# with 5429 stored elements in COOrdinate format>>
# 由信息可见它的含义是建立了2708*2708大小的矩阵但是只有5429个有效数值,故是稀疏矩阵。
adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])), shape=(labels.shape[0], labels.shape[0]), dtype=np.float32)
# build symmetric adjacency matrix , 由邻接稀疏矩阵构建对称邻接矩阵
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
print(features)
# 特征标准化
features = normalize_features(features)
print("hello")
print(features)
adj = normalize_adj(adj + sp.eye(adj.shape[0]))
# 把前140条数据作为训练集,200到500为验证数据集,500到1500作为测试集
idx_train = range(140)
idx_val = range(200, 500)
idx_test = range(500, 1500)
# 把矩阵和one-hot编码变为向量
adj = torch.FloatTensor(np.array(adj.todense()))
features = torch.FloatTensor(np.array(features.todense()))
labels = torch.LongTensor(np.where(labels)[1])
# 转换为向量类型
idx_train = torch.LongTensor(idx_train)
idx_val = torch.LongTensor(idx_val)
idx_test = torch.LongTensor(idx_test)
# print(adj[1],features)
# adj是邻接矩阵,features指的是把数值除以该文献为1的个数,比如0号有20个1每个1给0.05,labels是对7种分类的编码
# 三种数据分类只是给了索引
return adj, features, labels, idx_train, idx_val, idx_test
def normalize_adj(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
r_inv_sqrt = np.power(rowsum, -0.5).flatten()
r_inv_sqrt[np.isinf(r_inv_sqrt)] = 0.
# 将矩阵对角化
r_mat_inv_sqrt = sp.diags(r_inv_sqrt)
return mx.dot(r_mat_inv_sqrt).transpose().dot(r_mat_inv_sqrt)
def normalize_features(mx):
"""Row-normalize sparse matrix"""
# attentionn 这里其实不太好懂,它的本质意思其实是在读出的features里面统计一行的1的个数。
print(mx)
rowsum = np.array(mx.sum(1))
print(rowsum)
# 取数的倒数,变为0-1之间的数值
r_inv = np.power(rowsum, -1).flatten()
# 矩阵对角化并且将INF的数命为0
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
# 迷惑行为 再将两个矩阵乘起来
mx = r_mat_inv.dot(mx)
return mx
def accuracy(output, labels):
preds = output.max(1)[1].type_as(labels)
correct = preds.eq(labels).double()
correct = correct.sum()
return correct / len(labels)
if __name__ == '__main__':
load_data()
models层
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers import GraphAttentionLayer, SpGraphAttentionLayer
class GAT(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout, alpha, nheads):
"""Dense version of GAT."""
super(GAT, self).__init__()
self.dropout = dropout
# 获得隐藏层数的注意力层
self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)]
# 把获得的隐藏层加入到模型中
for i, attention in enumerate(self.attentions):
self.add_module('attention_{}'.format(i), attention)
# 在模型中添加输出层
self.out_att = GraphAttentionLayer(nhid * nheads, nclass, dropout=dropout, alpha=alpha, concat=False)
def forward(self, x, adj):
# 先定义x的dropout,以便于避免过拟合
x = F.dropout(x, self.dropout, training=self.training)
# 对输入的值在每一层attention层中进行处理。把激活函数处理后的值进行拼接
x = torch.cat([att(x, adj) for att in self.attentions], dim=1)
# 还是定义在输出层需要的dropout
x = F.dropout(x, self.dropout, training=self.training)
# 把最后的cat完的特征值输入到输出层
x = F.elu(self.out_att(x, adj))
return F.log_softmax(x, dim=1)
# 集成pytorchnn.module,重写forward方法。
class SpGAT(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout, alpha, nheads):
"""Sparse version of GAT."""
super(SpGAT, self).__init__()
self.dropout = dropout
self.attentions = [SpGraphAttentionLayer(nfeat,
nhid,
dropout=dropout,
alpha=alpha,
concat=True) for _ in range(nheads)]
for i, attention in enumerate(self.attentions):
self.add_module('attention_{}'.format(i), attention)
self.out_att = SpGraphAttentionLayer(nhid * nheads,
nclass,
dropout=dropout,
alpha=alpha,
concat=False)
def forward(self, x, adj):
x = F.dropout(x, self.dropout, training=self.training)
x = torch.cat([att(x, adj) for att in self.attentions], dim=1)
x = F.dropout(x, self.dropout, training=self.training)
x = F.elu(self.out_att(x, adj))
return F.log_softmax(x, dim=1)
layers层
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class GraphAttentionLayer(nn.Module):
"""
Simple GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout, alpha, concat=True):
super(GraphAttentionLayer, self).__init__()
# dropout参数
self.dropout = dropout
# 输入特征
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
self.concat = concat
# w和a就是paper里面的w和a
self.W = nn.Parameter(torch.zeros(size=(in_features, out_features)))
nn.init.xavier_uniform_(self.W.data, gain=1.414)
self.a = nn.Parameter(torch.zeros(size=(2*out_features, 1)))
nn.init.xavier_uniform_(self.a.data, gain=1.414)
# 定义leakyrelu的参数α
self.leakyrelu = nn.LeakyReLU(self.alpha)
def forward(self, input, adj):
# 输入参数内容:in表示输入的节点的特征向量,adj即一个邻接矩阵
# 从邻接矩阵得到关注里系数,然后再关注系数的前提下获得h_prime
# 对应公式1,将特征与矩阵w相乘
h = torch.mm(input, self.W)
# N最后其实也等于所有的节点数量
N = h.size()[0]
# 这里看起来有点费解
a_input = torch.cat([h.repeat(1, N).view(N * N, -1), h.repeat(N, 1)], dim=1).view(N, -1, 2 * self.out_features)
# 对应公式里面的e的求解,即求点与点之间的关注系数
e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(2))
# 表示如果邻接矩阵元素大于0时,则两个节点有连接,该位置的注意力系数保留,
# 否则需要mask并置为非常小的值,原因是softmax的时候这个最小值会不考虑。
zero_vec = -9e15*torch.ones_like(e)
attention = torch.where(adj > 0, e, zero_vec)
# 对应公式2
attention = F.softmax(attention, dim=1)
# 实现dropout
attention = F.dropout(attention, self.dropout, training=self.training)
# 张量的乘法
h_prime = torch.matmul(attention, h)
if self.concat:
# 对应公式5的激活函数已经内部内容,此处需要先进行激活再cat
return F.elu(h_prime)
else:
# 最后一层需要先进行平均再用激活函数
return h_prime
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'
class SpecialSpmmFunction(torch.autograd.Function):
"""Special function for only sparse region backpropataion layer."""
@staticmethod
def forward(ctx, indices, values, shape, b):
assert indices.requires_grad == False
a = torch.sparse_coo_tensor(indices, values, shape)
ctx.save_for_backward(a, b)
ctx.N = shape[0]
return torch.matmul(a, b)
@staticmethod
def backward(ctx, grad_output):
a, b = ctx.saved_tensors
grad_values = grad_b = None
if ctx.needs_input_grad[1]:
grad_a_dense = grad_output.matmul(b.t())
edge_idx = a._indices()[0, :] * ctx.N + a._indices()[1, :]
grad_values = grad_a_dense.view(-1)[edge_idx]
if ctx.needs_input_grad[3]:
grad_b = a.t().matmul(grad_output)
return None, grad_values, None, grad_b
class SpecialSpmm(nn.Module):
def forward(self, indices, values, shape, b):
return SpecialSpmmFunction.apply(indices, values, shape, b)
class SpGraphAttentionLayer(nn.Module):
"""
Sparse version GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout, alpha, concat=True):
super(SpGraphAttentionLayer, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
# concat对应的论文的5式
self.concat = concat
# init.xavier_normal_按照正态正态分布去填充向量里的数据
# 这里的w和a就是paper里面的w和a
self.W = nn.Parameter(torch.zeros(size=(in_features, out_features)))
nn.init.xavier_normal_(self.W.data, gain=1.414)
self.a = nn.Parameter(torch.zeros(size=(1, 2*out_features)))
nn.init.xavier_normal_(self.a.data, gain=1.414)
self.dropout = nn.Dropout(dropout)
self.leakyrelu = nn.LeakyReLU(self.alpha)
self.special_spmm = SpecialSpmm()
def forward(self, input, adj):
dv = 'cuda' if input.is_cuda else 'cpu'
# 取出输入的行数
N = input.size()[0]
# nonzero函数可以获得numpy数组里面的非零元素的索引值
edge = adj.nonzero().t()
# h: N x out,即把输入和获得的W相乘
h = torch.mm(input, self.W)
# 断言h里面不能有任何一个无穷值
assert not torch.isnan(h).any()
# Self-attention on the nodes - Shared attention mechanism
edge_h = torch.cat((h[edge[0, :], :], h[edge[1, :], :]), dim=1).t()
# edge: 2*D x E
# leakyrelu对应于公式3,leakyrelu(a * h)
# squeeze可以把维度为1的维去掉
edge_e = torch.exp(-self.leakyrelu(self.a.mm(edge_h).squeeze()))
assert not torch.isnan(edge_e).any()
# edge_e: E
e_rowsum = self.special_spmm(edge, edge_e, torch.Size([N, N]), torch.ones(size=(N,1), device=dv))
# e_rowsum: N x 1
# 对边进行dropout
edge_e = self.dropout(edge_e)
# edge_e: E
h_prime = self.special_spmm(edge, edge_e, torch.Size([N, N]), h)
assert not torch.isnan(h_prime).any()
# h_prime: N x out
h_prime = h_prime.div(e_rowsum)
# h_prime: N x out
assert not torch.isnan(h_prime).any()
if self.concat:
# if this layer is not last layer,
return F.elu(h_prime)
else:
# if this layer is last layer,
return h_prime
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'