Dataframe优化内存(转)

Pandas】Pandas处理大数据集的方法(内存优化,减少内存使用量90%)

将内存使用量减少高达90%的方法
当使用具有小数据(小于100兆字节)的pandas时,性能很少成为问题。当我们迁移到更大的数据(100兆字节到几千兆字节)时,性能问题会使运行时间更长,并导致代码因内存不足而完全失败。

虽然像Spark这样的工具可以处理大型数据集(100千兆字节到多兆兆字节),但充分利用它们的功能通常需要更昂贵的硬件。与熊猫不同,它们缺乏丰富的功能集,可用于高质量的数据清理,探索和分析。对于中型数据,我们最好尝试从熊猫中获取更多,而不是切换到不同的工具。

在这篇文章中,我们将了解大熊猫的内存使用情况,如何通过为列选择适当的数据类型,将数据帧的内存占用量减少近90%。

使用棒球比赛日志
我们将处理130年大联盟棒球比赛的数据,最初来自Retrosheet。

最初数据是在127个单独的CSV文件中,但我们使用csvkit合并文件,并在第一行添加了列名。如果您想下载我们的数据版本以及此帖子,我们已在此处提供。

让我们首先导入我们的数据并查看前五行。

在这里插入图片描述

我们总结了下面的一些重要列,但是如果您想查看所有列的指南,我们已经为整个数据集创建了一个数据字典:

date - 比赛日期。
v_name - 访问团队名称。
v_league - 参观团队联赛。
h_name - 主队名称。
h_league - 主队联赛。
v_score - 访问团队得分。
h_score - 主队得分。
v_line_score- 访问团队线路分数,例如010000(10)00。
h_line_score- 主队线得分,例如010000(10)0X。
park_id - 举行比赛的公园的ID。
attendance- 游戏参与。
我们可以使用该DataFrame.info()方法为我们提供有关数据帧的高级信息,包括其大小,有关数据类型和内存使用情况的信息。

默认情况下,pandas近似于数据帧的内存使用量以节省时间。因为我们对准确性感兴趣,所以我们将memory_usage参数设置’deep’为获得准确的数字。

在这里插入图片描述
我们可以看到我们有171,907行和161列。Pandas为我们自动检测了类型,包含83个数字列和78个对象列。对象列用于字符串或列包含混合数据类型。

因此,我们可以更好地了解我们可以减少内存使用的位置,让我们来看看pandas如何在内存中存储数据。

数据帧的内部表示
在引擎盖下,pandas将列分组为相同类型的值块。以下是pandas如何存储数据帧的前12列的预览。
在这里插入图片描述

您会注意到块不维护对列名的引用。这是因为块被优化用于在数据帧中存储实际值。该图块管理员类是负责维护的行和列索引和实际块之间的映射。它充当API,提供对底层数据的访问。每当我们选择,编辑或删除值时,dataframe类都与BlockManager类接口,以将我们的请求转换为函数和方法调用。

每种类型在pandas.core.internals模块中都有一个专门的类。Pandas使用ObjectBlock类来表示包含字符串列的块,使用FloatBlock类来表示包含float列的块。对于表示整数和浮点数等值的块,pandas组合列并将它们存储为NumPy ndarray。NumPy ndarray围绕C数组构建,值存储在连续的内存块中。由于这种存储方案,访问一片值非常快。

因为每种数据类型都是单独存储的,所以我们将按数据类型检查内存使用情况。让我们从查看数据类型的平均内存使用情况开始。

在这里插入图片描述
我们立即可以看到78 object列中使用了大部分内存。我们稍后会看一下,但首先让我们看看我们是否可以改进数字列的内存使用情况。

了解子类型

正如我们之前简要提到的,在引擎盖下,pandas将数值表示为NumPy ndarrays,并将它们存储在连续的内存块中。此存储模型占用的空间更少,并允许我们快速访问值本身。因为pandas使用相同的字节数表示相同类型的每个值,并且NumPy ndarray存储值的数量,所以pandas可以返回数字列快速准确地消耗的字节数。

pandas中的许多类型都有多个子类型,可以使用更少的字节来表示每个值。例如,该float类型具有float16,float32和float64亚型。类型名称的数字部分表示类型用于表示值的位数。例如,我们亚型刚刚上市使用2,4,8和 16字节,分别。下表显示了最常见的pandas类型的子类型:
在这里插入图片描述

一个int8值使用1的字节(或8比特)来存储的值,并且可以表示256值(2^8)的二进制。这意味着我们可以使用该亚型代表值范围从-128到127(包括0)。

我们可以使用numpy.info该类来验证每个整数子类型的最小值和最大值。我们来看一个例子:

在这里插入图片描述

我们可以在这里看到uint(无符号整数)和int(有符号整数)之间的区别。两种类型都具有相同的存储容量,但只存储正值,无符号整数使我们能够更有效地存储仅包含正值的列。

使用子类型优化数值列

我们可以使用该函数pd.to_numeric()来向下转换我们的数字类型。我们将使用DataFrame.select_dtypes只选择整数列,然后我们将优化类型并比较内存使用情况。

在这里插入图片描述
在这里插入图片描述

我们可以看到内存使用量下降了7.9到1.5兆字节,减少了80%以上。然而,对我们原始数据帧的总体影响并不大,因为整数列很少。

让我们的浮动列做同样的事情。
在这里插入图片描述

我们可以看到我们所有的浮动列都已转换float64为float32,使我们的内存使用量减少了50%。

让我们创建原始数据帧的副本,分配这些优化的数字列代替原始数据,并查看我们现在的整体内存使用情况。

在这里插入图片描述

虽然我们已经大大减少了数字列的内存使用量,但总体而言我们只将数据帧的内存使用量减少了7%。我们的大部分收益来自优化对象类型。

在我们开始之前,让我们仔细看看与数字类型相比如何在pandas中存储字符串

将Numeric与String存储进行比较

该object类型使用Python字符串对象表示值,部分原因是缺少对NumPy中缺少字符串值的支持。因为Python是一种高级解释语言,所以它没有对内存中的值的存储方式进行细粒度控制。

此限制导致字符串以碎片方式存储,消耗更多内存并且访问速度较慢。对象列中的每个元素实际上都是一个指针,其中包含实际值在内存中的位置的“地址”。

下面的图表显示了数字数据如何存储在NumPy数据类型中,以及如何使用Python的内置类型存储字符串。
在这里插入图片描述

您可能已经注意到我们之前的图表描述的object类型是使用可变数量的内存。虽然每个指针占用1个字节的内存,但每个实际的字符串值使用与在Python中单独存储时字符串将使用的相同数量的内存。让我们sys.getsizeof()用来证明这一点,先看看单个字符串,然后再查看熊猫系列中的项目。
在这里插入图片描述

您可以看到存储在pandas系列中的字符串大小与它们在Python中作为单独字符串的用法相同。

使用分类优化对象类型

Pandas 在0.15版本中引入了Categoricals。该category类型使用引擎盖下的整数值来表示列中的值,而不是原始值。Pandas使用单独的映射字典将整数值映射到原始值。只要列包含一组有限的值,此排列就很有用。当我们将列转换为categorydtype时,pandas使用最节省空间的int子类型,该子类型可以表示列中的所有唯一值。

在这里插入图片描述

为了概述我们可以使用此类型减少内存的位置,让我们看一下每个对象类型的唯一值的数量。

在这里插入图片描述

快速浏览一下就会发现很多列,相对于我们数据集中的总体约172,000个游戏,几乎没有独特的值。

在我们深入研究之前,我们首先选择一个对象列,然后查看将其转换为分类类型时幕后发生的情况。我们将使用数据集的第二列day_of_week。

看着上面的表。我们可以看到它只包含七个唯一值。我们将使用该.astype()方法将其转换为分类。
在这里插入图片描述
如您所见,除了列的类型已更改之外,数据看起来完全相同。让我们来看看发生了什么。

在下面的代码中,我们使用该Series.cat.codes属性返回category类型用于表示每个值的整数值。

在这里插入图片描述
您可以看到每个唯一值都已分配一个整数,并且该列的基础数据类型现在已经分配int8。此列没有任何缺失值,但如果有,则category子类型通过将其设置为缺失值来处理-1。

最后,让我们看一下转换为category类型之前和之后此列的内存使用情况 。


我们已经从9.8MB的内存使用量减少到0.16MB的内存使用量,或者减少了98%!请注意,此特定列可能代表我们最好的情况之一,一个包含约172,000个项目的列,其中只有7个唯一值。

虽然将所有列转换为此类型听起来很吸引人,但重要的是要注意权衡。最大的一个是无法进行数值计算。我们不能对category列进行算术运算,也不能先使用Series.min()和Series.max()不转换为真正的数字dtype的方法。

我们应该坚持category主要使用类型的object列,其中少于50%的值是唯一的。如果列中的所有值都是唯一的,则category类型最终将使用更多内存。这是因为除了整数类别代码之外,该列还存储了所有原始字符串值。您可以category在pandas文档中阅读有关该类型限制的更多信息。

我们将编写一个循环来迭代每object列,检查唯一值的数量是否小于50%,如果是,则将其转换为类别类型。
在这里插入图片描述

在这种情况下,我们所有的对象列都被转换为category类型,但是对于所有数据集都不是这种情况,因此您应该确保使用上面的过程进行检查。

更重要的是,我们的object列的内存使用量从752MB增加到52MB,或减少了93%。让我们将其与我们的其余数据帧结合起来,看看我们与我们开始使用的861MB内存使用情况相关的位置。

在这里插入图片描述
您可能还记得,它是作为整数类型读入的,并且已经过优化unint32。因此,将其转换为datetime实际上将其内存使用量加倍,因为datetime类型是64位类型。将它转换为datetime无论如何都是有价值的,因为它可以让我们更容易地进行时间序列分析。

我们将使用pandas.to_datetime()函数转换,使用format参数告诉它我们的日期数据已存储YYYY-MM-DD。

在这里插入图片描述

读取数据时选择类型

到目前为止,我们已经探索了减少现有数据帧内存占用的方法。通过首先读取数据帧然后迭代节省内存的方法,我们能够理解我们可以期望从每个优化中更好地节省的内存量。然而,正如我们之前在任务中提到的,我们通常没有足够的内存来表示数据集中的所有值。当我们甚至无法创建数据帧时,我们如何应用节省内存的技术?

幸运的是,我们可以在读取数据集时指定最佳列类型.pandas.read_csv()函数有一些允许我们执行此操作的不同参数。该dtype参数接受一个字典,该字典具有(字符串)列名作为键,NumPy类型对象作为值。

首先,我们将每个列的最终类型存储在字典中,其中包含列名称的键,首先删除日期列,因为需要单独处理。

在这里插入图片描述
现在我们可以使用字典,以及日期的几个参数来读取数据,并在几行中使用正确的类型:

在这里插入图片描述
在这里插入图片描述
通过优化列,我们设法将大熊猫的内存使用量从861.6 MB减少到104.28 MB - 令人印象深刻的减少了88%!

分析棒球比赛

现在我们已经优化了数据,我们可以进行一些分析。让我们先看一下游戏日的分布情况。

在这里插入图片描述

我们可以看到,在20世纪20年代之前,周日棒球比赛在星期日很少见,直到上世纪下半叶逐渐流行。

我们还可以清楚地看到,过去50年来游戏日的分布一直相对稳定。

让我们看一下这些年来游戏长度的变化情况。

在这里插入图片描述

看起来棒球比赛从20世纪40年代开始持续变长。

总结和后续步骤
我们已经了解了pandas如何使用不同的类型存储数据,然后我们使用这些知识将我们的pandas数据帧的内存使用量减少了近90%,只需使用一些简单的技术:

将数字列向下转换为更有效的类型。
将字符串列转换为分类类型。

原文:https://www.dataquest.io/blog/pandas-big-data/

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值