企业管理的数据比以往任何时候都多。事实上,根据IDC的数据,到2025年,全球数据圈预计将达到175 zettabytes。
随着越来越多的公司将其数据迁移到云端以确保可用性和可扩展性,与数据管理和保护相关的风险也在增加。
公司如何保护其企业数据资产,同时确保其对管理员和消费者的可用性,同时最小化成本并满足数据隐私要求?
数据安全从数据治理开始
缺乏坚实的数据治理基础会增加数据安全事件的风险。每年像杂草一样突然出现的数据泄露能够得出这样一个结论,即缺乏数据治理的公司最终很难严格地从技术角度构建安全架构。
鉴于每家公司都拥有基于其提供的私人数据的重要信息以及与他人的关系,每个企业都应该了解相关的风险,并在数据治理的旗帜下防范这些风险,避免数据泄露可能带来的成本和声誉损失,这将更加明智。这一点尤其重要,因为数据驱动的企业势头与自助服务分析一起增长,自助服务分析使用户能够更好地访问信息,通常在不知情的情况下使用信息。
事实上,由于企业中几乎每个人都参与维护或使用公司的数据,只有业务和IT部门开始合作发现、理解、管理和交流这些数据资产才有意义。这应该是数据治理计划的一部分,该计划强调让所有利益相关者不仅负责为业务利益增强数据,还负责降低不受限制地访问和使用信息技术可能带来的风险。
通过数据目录和读写功能,您可以提供一个环境来保持相关数据的私密性和安全性——可用资产、它们的位置、它们之间的关系、相关系统和流程、授权用户和使用指南。
如果没有数据治理,企业就无法将数据治理、安全和隐私的各个方面联系起来,并据此采取行动。所以他们无法回答这些基本问题:
我们有什么数据,现在在哪里?
它从哪里来,又是如何改变的?
是敏感数据还是存在任何相关风险?
谁有权使用它,如何使用?
当一个组织知道它拥有什么样的数据时,它可以定义该数据的业务用途。了解业务目的意味着积极管理个人数据,防止潜在的隐私和安全侵犯。
你知道你的敏感数据在哪里吗?
数据是用于运营、管理和发展业务的宝贵资产。有时在数据库、数据湖和数据仓库中闲置;很大一部分是与整个企业、管理和治理问题相关的,这些问题必须得到解决。
了解敏感数据的位置,并通过政策规则、影响分析和沿袭视图对其进行适当管理,对于风险管理、数据审计和合规性至关重要。
例如,了解和保护敏感数据对于遵守欧盟《通用数据保护条例》(GDPR)等隐私法规尤为重要。
GDPR对组织的要求包罗万象。保护传统上被认为是个人身份信息(PII)的东西——企业收集的人名、地址、政府身份证号码等,以及东道主——只是GDPR授权的开始。现在,个人数据指的是收集或存储的任何可以链接到个人的信息(一直到IP地址),不仅适用于个人信息,还适用于如何将这些信息组合在一起以揭示关系。它不仅保护您的企业收集、处理和存储的数据,还保护它可能从第三方来源利用的任何数据。
当关键数据没有作为集成过程的一部分被发现、收集、编目、定义和标准化时,审计可能存在缺陷,从而使您的组织面临风险。
必须自动标记多个系统中以各种形式存在的敏感数据(静止或运动中的数据),自动记录其沿袭,并对其流进行描述,以便轻松找到,并在工作流中轻松跟踪其使用情况。
幸运的是,可以通过以下工具来帮助自动化敏感数据的扫描、检测和标记:
监视和控制敏感数据:在整个企业中提高可见性和控制能力,以识别数据安全威胁并降低相关风险
为敏感数据发现丰富业务数据元素:跨数据库系统、云和大数据存储为PII、PHI和PCI定义业务数据元素的综合机制,以便基于一组算法和数据模式轻松识别敏感数据
提供元数据和基于价值的分析:根据元数据和数据价值模式及算法发现和分类敏感数据。组织可以定义业务数据元素和规则来识别和定位敏感数据,包括PII、PHI、PCI和其他敏感信息。
通过数据智能最大限度地减少风险暴露
如果无法掌握如何处理数据,遭受数据丢失的组织将无法从安全技术上花费的资金中获益,也无法从开发数据隐私分类的时间中获益。
他们还可能面临巨额罚款和其他处罚——更不用说糟糕的公关了。
不要让这种情况发生在你的组织上。
一个由数据智能驱动和协调的结构良好的安全体系结构是你最好的防御。做好准备意味着你可以最大限度地减少风险暴露。
有了erwin Data Intelligence by Quest,您将可以自由查看敏感数据所在的位置,并能够无缝应用隐私规则和创建访问权限。
此外,随着Quest收购erwin,它能够屏蔽、加密、编辑和审核敏感数据,从而实现解决敏感数据问题的自动化综合解决方案。
当一个组织知道它拥有什么样的数据时,它可以定义该数据的业务用途。了解业务目的意味着积极管理个人数据,防止潜在的隐私和安全侵犯。
从风险管理和法规遵从性到创新和数字转型,您需要数据智能。使用erwin DI by Quest,您将了解自己的数据,从而充分实现其业务优势。