codeforces1440D Graph Subset Problem

题目:

给定一个 n n n个结点 m m m条边的无向图和一个 k k k,要你二选一,要么找出一个结点数为 k k k的完全子图,要么找出一个点集满足其中任意一个结点都有大于等于 k k k个邻点在点集内,如果都找不出,输出-1。
( 1 ≤ n , m , k ≤ 1 0 5 , k ≤ n ) (1 \le n,m,k \le 10^5,k \le n) (1n,m,k105,kn)

题解:

两个问题分开来看。
第二个问题相对简单些。每当找到一个点的度小于 k k k,那么这个点一定不在要求的点集中,所以将这个点和它的连边都删去,这样一直删下去,直到所有点的度都大于等于 k k k了或者所有的点都删光了为止。如果还有点没有被删掉,那么剩下的点集就是要求的点集。
第一个问题在第二个问题找不到解的情况下进行。先每次找一个点的度小于 k − 1 k-1 k1,将它和它的连边删去,直到所有点的度都大于等于 k − 1 k-1 k1了为止,这时还剩的点数是 O ( m k ) \displaystyle O(\frac{m}{k}) O(km)的。然后找度数为 k − 1 k-1 k1的结点 u u u,点 u u u和它的 k − 1 k-1 k1个邻点可能构成要求的点集,且是包含结点 u u u的唯一可能的点集,我们把这个点集存下来,然后将结点 u u u删掉,因为其他满足要求的点集不可能包括结点 u u u。重复上述过程,并且要把度数小于 k − 1 k-1 k1的结点也删掉,直到结点删光(因为第二个问题没有解,所以不可能留下一个度数都大于等于 k k k的点集)。
接下来我们需要 c h e c k check check存下来的点集是否是完全子图。一种方法是对于每个可能的点集直接进行 c h e c k check check,将图存进 u n o r d e r e d _ m a p unordered\_map unordered_map里面,然后对于每个可能点集进行 O ( k 2 ) O(k^2) O(k2) c h e c k check check,可能的点集最多 O ( m k ) \displaystyle O(\frac{m}{k}) O(km)个,所以总的复杂度为 O ( m k ) O(mk) O(mk),因为如果存在解,所以 O ( k ) = O ( m ) O(k)=O(\sqrt m) O(k)=O(m ),所以复杂度是 O ( m 3 / 2 ) O(m^{3/2}) O(m3/2)的;另一种方法是对于每个点 u u u,将其在原图上的邻点进行染色,然后对于点 u u u所在的所有可能点集,看其中所有的点是否被染色,如果存在点没被染色,那么这个点集就是无效的,因为所有的点集尤其仅会被访问一次,所以复杂度还是 O ( m 3 / 2 ) O(m^{3/2}) O(m3/2)的。

复杂度: O ( m 3 / 2 ) O(m^{3/2}) O(m3/2)
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<string>
#include<bitset>
#include<sstream>
#include<ctime>
//#include<chrono>
//#include<random>
//#include<unordered_map>
using namespace std;

#define ll long long
#define ls o<<1
#define rs o<<1|1
#define pii pair<int,int>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define sz(x) (int)(x).size()
#define all(x) (x).begin(),(x).end()
const double pi=acos(-1.0);
const double eps=1e-6;
const int mod=1e9+7;
const int INF=0x3f3f3f3f;
const int maxn=1e5+5;
ll read(){
	ll x=0,f=1;
	char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
int t,n,m,k,tot;
vector<int>g[maxn];
int col[maxn],del[maxn],deg[maxn],ok[maxn];
queue<int>q;
vector<int>ans,num[maxn];
vector<int>cq[maxn];
int main(void){
	// freopen("in.txt","r",stdin);
	scanf("%d",&t);
	while(t--){
		scanf("%d%d%d",&n,&m,&k);
		for(int i=1;i<=n;i++){
			g[i].clear();
			del[i]=0;
			deg[i]=0;
		}
		int u,v;
		for(int i=1;i<=m;i++){
			scanf("%d%d",&u,&v);
			g[u].pb(v);
			g[v].pb(u);
			deg[u]++;
			deg[v]++;
		}
		while(!q.empty())q.pop();
		for(int i=1;i<=n;i++){
			if(deg[i]<k){
				q.push(i);
				del[i]=1;
			}
		}
		int cnt=0;
		while(!q.empty()){
			int u=q.front();
			q.pop();
			++cnt;
			for(auto v:g[u]){
				if(del[v])continue;
				deg[v]--;
				if(deg[v]<k){
					q.push(v);
					del[v]=1;
				}
			}
		}
		// printf("%d\n",n);
		if(cnt<n){
			ans.clear();
			for(int i=1;i<=n;i++){
				if(!del[i]){
					ans.pb(i);
				}
			}
			printf("1 %d\n",sz(ans));	
			for(int i=0;i<sz(ans);i++){
				printf("%d ",ans[i]);
			}
			puts("");
			continue;
		}

		for(int i=1;i<=n;i++){
			del[i]=0;
			deg[i]=sz(g[i]);
			num[i].clear();
		}
		for(int i=1;i<=n;i++){
			if(deg[i]<k-1){
				q.push(i);
				del[i]=1;
			}
		}
		while(!q.empty()){
			int u=q.front();
			q.pop();
			for(auto v:g[u]){
				if(del[v])continue;
				deg[v]--;
				if(deg[v]<k-1){
					del[v]=1;
					q.push(v);
				}
			}
		}
		tot=0;
		for(int i=1;i<=n;i++){
			if(deg[i]==k-1){
				q.push(i);
				del[i]=2;
			}
		}
		while(!q.empty()){
			int u=q.front();
			q.pop();
			del[u]=1;
			if(deg[u]==k-1){
				++tot;
				cq[tot].clear();
				cq[tot].pb(u);
				num[u].pb(tot);
				for(auto v:g[u]){
					if(del[v]==1)continue;
					cq[tot].pb(v);
					num[v].pb(tot);
				}
			}
			for(auto v:g[u]){
				deg[v]--;
				if(del[v])continue;
				if(deg[v]<k){
					q.push(v);
					del[v]=2;
				}
			}
		}
		for(int i=1;i<=tot;i++)ok[i]=1;
		for(int i=1;i<=n;i++){
			col[i]=1;
			for(auto v:g[i]){
				col[v]=1;
			}
			for(auto v:num[i]){
				int f=1;
				for(auto w:cq[v]){
					if(col[w]==0){
						f=0;
						break;
					}
				}
				if(!f)ok[v]=0;
			}
			col[i]=0;
			for(auto v:g[i]){
				col[v]=0;
			}
		}
		int f=0;
		for(int i=1;i<=tot;i++){
			if(ok[i]){
				puts("2");
				for(auto v:cq[i]){
					printf("%d ",v);
				}
				puts("");
				f=1;
				break;
			}
		}
		if(f)continue;
		puts("-1");
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值