题目:
给定一个
n
n
n个结点
m
m
m条边的无向图和一个
k
k
k,要你二选一,要么找出一个结点数为
k
k
k的完全子图,要么找出一个点集满足其中任意一个结点都有大于等于
k
k
k个邻点在点集内,如果都找不出,输出-1。
(
1
≤
n
,
m
,
k
≤
1
0
5
,
k
≤
n
)
(1 \le n,m,k \le 10^5,k \le n)
(1≤n,m,k≤105,k≤n)
题解:
两个问题分开来看。
第二个问题相对简单些。每当找到一个点的度小于
k
k
k,那么这个点一定不在要求的点集中,所以将这个点和它的连边都删去,这样一直删下去,直到所有点的度都大于等于
k
k
k了或者所有的点都删光了为止。如果还有点没有被删掉,那么剩下的点集就是要求的点集。
第一个问题在第二个问题找不到解的情况下进行。先每次找一个点的度小于
k
−
1
k-1
k−1,将它和它的连边删去,直到所有点的度都大于等于
k
−
1
k-1
k−1了为止,这时还剩的点数是
O
(
m
k
)
\displaystyle O(\frac{m}{k})
O(km)的。然后找度数为
k
−
1
k-1
k−1的结点
u
u
u,点
u
u
u和它的
k
−
1
k-1
k−1个邻点可能构成要求的点集,且是包含结点
u
u
u的唯一可能的点集,我们把这个点集存下来,然后将结点
u
u
u删掉,因为其他满足要求的点集不可能包括结点
u
u
u。重复上述过程,并且要把度数小于
k
−
1
k-1
k−1的结点也删掉,直到结点删光(因为第二个问题没有解,所以不可能留下一个度数都大于等于
k
k
k的点集)。
接下来我们需要
c
h
e
c
k
check
check存下来的点集是否是完全子图。一种方法是对于每个可能的点集直接进行
c
h
e
c
k
check
check,将图存进
u
n
o
r
d
e
r
e
d
_
m
a
p
unordered\_map
unordered_map里面,然后对于每个可能点集进行
O
(
k
2
)
O(k^2)
O(k2)的
c
h
e
c
k
check
check,可能的点集最多
O
(
m
k
)
\displaystyle O(\frac{m}{k})
O(km)个,所以总的复杂度为
O
(
m
k
)
O(mk)
O(mk),因为如果存在解,所以
O
(
k
)
=
O
(
m
)
O(k)=O(\sqrt m)
O(k)=O(m),所以复杂度是
O
(
m
3
/
2
)
O(m^{3/2})
O(m3/2)的;另一种方法是对于每个点
u
u
u,将其在原图上的邻点进行染色,然后对于点
u
u
u所在的所有可能点集,看其中所有的点是否被染色,如果存在点没被染色,那么这个点集就是无效的,因为所有的点集尤其仅会被访问一次,所以复杂度还是
O
(
m
3
/
2
)
O(m^{3/2})
O(m3/2)的。
复杂度: O ( m 3 / 2 ) O(m^{3/2}) O(m3/2)
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<string>
#include<bitset>
#include<sstream>
#include<ctime>
//#include<chrono>
//#include<random>
//#include<unordered_map>
using namespace std;
#define ll long long
#define ls o<<1
#define rs o<<1|1
#define pii pair<int,int>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define sz(x) (int)(x).size()
#define all(x) (x).begin(),(x).end()
const double pi=acos(-1.0);
const double eps=1e-6;
const int mod=1e9+7;
const int INF=0x3f3f3f3f;
const int maxn=1e5+5;
ll read(){
ll x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int t,n,m,k,tot;
vector<int>g[maxn];
int col[maxn],del[maxn],deg[maxn],ok[maxn];
queue<int>q;
vector<int>ans,num[maxn];
vector<int>cq[maxn];
int main(void){
// freopen("in.txt","r",stdin);
scanf("%d",&t);
while(t--){
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=n;i++){
g[i].clear();
del[i]=0;
deg[i]=0;
}
int u,v;
for(int i=1;i<=m;i++){
scanf("%d%d",&u,&v);
g[u].pb(v);
g[v].pb(u);
deg[u]++;
deg[v]++;
}
while(!q.empty())q.pop();
for(int i=1;i<=n;i++){
if(deg[i]<k){
q.push(i);
del[i]=1;
}
}
int cnt=0;
while(!q.empty()){
int u=q.front();
q.pop();
++cnt;
for(auto v:g[u]){
if(del[v])continue;
deg[v]--;
if(deg[v]<k){
q.push(v);
del[v]=1;
}
}
}
// printf("%d\n",n);
if(cnt<n){
ans.clear();
for(int i=1;i<=n;i++){
if(!del[i]){
ans.pb(i);
}
}
printf("1 %d\n",sz(ans));
for(int i=0;i<sz(ans);i++){
printf("%d ",ans[i]);
}
puts("");
continue;
}
for(int i=1;i<=n;i++){
del[i]=0;
deg[i]=sz(g[i]);
num[i].clear();
}
for(int i=1;i<=n;i++){
if(deg[i]<k-1){
q.push(i);
del[i]=1;
}
}
while(!q.empty()){
int u=q.front();
q.pop();
for(auto v:g[u]){
if(del[v])continue;
deg[v]--;
if(deg[v]<k-1){
del[v]=1;
q.push(v);
}
}
}
tot=0;
for(int i=1;i<=n;i++){
if(deg[i]==k-1){
q.push(i);
del[i]=2;
}
}
while(!q.empty()){
int u=q.front();
q.pop();
del[u]=1;
if(deg[u]==k-1){
++tot;
cq[tot].clear();
cq[tot].pb(u);
num[u].pb(tot);
for(auto v:g[u]){
if(del[v]==1)continue;
cq[tot].pb(v);
num[v].pb(tot);
}
}
for(auto v:g[u]){
deg[v]--;
if(del[v])continue;
if(deg[v]<k){
q.push(v);
del[v]=2;
}
}
}
for(int i=1;i<=tot;i++)ok[i]=1;
for(int i=1;i<=n;i++){
col[i]=1;
for(auto v:g[i]){
col[v]=1;
}
for(auto v:num[i]){
int f=1;
for(auto w:cq[v]){
if(col[w]==0){
f=0;
break;
}
}
if(!f)ok[v]=0;
}
col[i]=0;
for(auto v:g[i]){
col[v]=0;
}
}
int f=0;
for(int i=1;i<=tot;i++){
if(ok[i]){
puts("2");
for(auto v:cq[i]){
printf("%d ",v);
}
puts("");
f=1;
break;
}
}
if(f)continue;
puts("-1");
}
return 0;
}