Spark 任务提交的底层原理图

自己总结了一下,花了一张图
在这里插入图片描述

1.通过Spark-submit脚本提交代码到集群上运行。
2.Driver进程。当我们开始初始化代码第一行的SparkContext上下文的时候,会创建两个对象——DAG Scheduler、Task Scheduler
3.DAG Scheduler会通过stage划分算法进行stage的划分,然后通过创建TaskSet将所有的Task提交到Task Scheduler上
4.当两个对象创建完成后,Driver端会向集群的Master节点发送Application任务
5.Master接收到任务后,通过资源分配算法进行任务调度
6.Master找到对应的Worker
7.Worker接收到Master发来的任务消息,这个时候开始创建对应的Executor
8.Executor启动完成后,会反向注册到Driver,初始化完成
9.遇到一个Action算子后开始提交任务
10.当Task Scheduler进行提交任务时候,在Task提交过程中有一个Task分配算法
11.当Task任务进来后,去线程池中取到对应的线程,开始执行任务
12.Task内部有两种Task:一种叫shuffleMapTask,一种叫ResultTask
13.去HDFS上读取相应的文件数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值