本文主要对两种数据集读取方式进行谈论,一种是paddle官方的数据集,另一种是如何自己制作所需的数据集。
一、官方数据集读取
- mnist数据集(手写数据集)
- cifar数据集
- Conll05数据集
- imdb数据集
- imikolov数据集
- movielens数据集
- sentiment数据集
- uci_housing数据集(房价数据集,好像是关于波斯顿房价的)
- wmt 14数据集
- wmt 16数据集
以常用的手写数据集mnist数据集为例,进行说明。
mnist数据集模块
此模块将训练集和测试集解析为paddle reader creator.MNIST训练数据集的creator.
获取训练集和测试集:
#以下代码是通过paddle的框架获取官方的mnist数据集中的训练集和测试集
import paddle #导入paddle库
import paddle.fluid as fliid
import numpy as np
import matplotlib .pyplot as plt
#paddle.dataset.mnist.train()是mnist训练集的creator,它返回一个reader creator,reader中的每个样本的图像像素范围是[-1,1],标签范围是[0-9]
trainset=paddle.dataset.mnist.train()#训练集
#paddle.dataset.mnist.test()是mnist训练集的creator,它返回一个reader creator,reader中的每个样本的图像像素范围是[-1,1],标签范围是[0-9]
testset=paddle.dataset.mnist.test()#测试集
train_reader=fluid.io.batch(trainset,batch_size=8)#将数据打包,训练集batch_size=8
test_reader=fluid.io.batch(testset,batch_size=16)#将数据打包,测试集batch_size=16
2020-05-11 10:42:33,560-INFO: font search path ['/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/ttf', '/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/afm', '/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/pdfcorefonts'] 2020-05-11 10:42:33,939-INFO: generated new fontManager [==================================================]t/train-images-idx3-ubyte.gz not found, downloading https://dataset.bj.bcebos.com/mnist/train-images-idx3-ubyte.gz [==================================================]t/train-labels-idx1-ubyte.gz not found, downloading https://dataset.bj.bcebos.com/mnist/train-labels-idx1-ubyte.gz [===========