学习记录
与其在风雨中逃避,不如在雷电中舞蹈
这个作者很懒,什么都没留下…
展开
-
MICO论文笔记
Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation思想:构建模型的时候,将MRI影像分解为真实图像和偏移场这两项的乘积。原创 2020-09-29 10:25:05 · 494 阅读 · 0 评论 -
paddle中进行数据集解压及划分数据集
paddle中进行数据集解压及划分数据集原创 2020-06-08 09:46:40 · 2683 阅读 · 0 评论 -
VGG
VGGVGG是当前最流行的CNN模型之一,2014年由simonyan和zisserman提出,其命名来源于论文作者所在的实验室Visual Geometry Group.AlexNet模型通过构造多层网络,取得了较好的效果,但是并没有给出深度神经网络设计的方向。VGG通过使用一系列大小为3*3的小尺寸卷积核和pooling层构造深度卷积神经网络,并取得了较好的效果。VGG模型因结构简单、应用性强而广受研究者欢迎,求其是它的网络结构设计方法,为构建深度神经网络提供了方向。VGG-16的网络结构示意图原创 2020-06-04 21:13:36 · 272 阅读 · 0 评论 -
卷积神经网络实践--猫狗分类
利用卷积神经网络实现猫狗分类原创 2020-06-03 10:31:12 · 2361 阅读 · 2 评论 -
LeNet
LeNet原创 2020-06-02 10:13:20 · 660 阅读 · 0 评论 -
手写数值识别之----恢复训练
恢复训练原创 2020-05-22 17:25:01 · 507 阅读 · 0 评论 -
手写数字识别之----训练调试与优化
对模型的调试和优化方法。原创 2020-05-22 15:48:15 · 891 阅读 · 0 评论 -
手写数字识别之----优化算法
优化算法原创 2020-05-21 09:48:17 · 569 阅读 · 0 评论 -
数字识别之---介绍损失函数
基于数字识别介绍损失函数原创 2020-05-20 15:08:04 · 1166 阅读 · 0 评论 -
手写数字识别之------经典的全连接神经网络与卷积神经网络
初始全连接神经网络与卷积神经网络原创 2020-05-19 21:23:28 · 1624 阅读 · 0 评论 -
手写数字识别之数据处理-----以MNIST为例进行完整数据读取与处理
以MNIST为例进行完整数据读取与处理原创 2020-05-19 10:05:46 · 2636 阅读 · 3 评论 -
波士顿房价预测任务
python波士顿房价预测原创 2020-05-17 14:01:47 · 971 阅读 · 0 评论 -
使用飞桨构建波士顿房价预测模型
使用飞桨构建波士顿房价预测模型原创 2020-05-17 12:11:38 · 767 阅读 · 0 评论 -
区域卷积神经网络(RCNN)
简介区域卷积神经网络(RCNN)系列模型为两阶段目标检测器/通过对图像生成候选区域,提取特征,判别特征类别并修正候选框位置。RCNN系列目前包含两个代表模型:Faster CNN,Mask RCNN.Faster RCNN网络可以分为四个主要步骤:1.基础卷积层。作为一种卷积神经网络目标检测方法,Faster RCNN首先使用一组基础的卷积网络提取图像的特征图。特征图被后续RPN层和全连接层共享。本示例使用ResNet-50作为基础卷积层。2.区域生成网络(RPN),区域生成网络用于原创 2020-05-15 20:20:46 · 2339 阅读 · 0 评论 -
用Paddlepaddle实现车辆逆行违章检测
本次实例是使用paddlepaddle实现车辆逆行违章检测。原创 2020-05-14 17:26:55 · 2537 阅读 · 4 评论 -
如何读取数据集
本文主要对两种数据集读取方式进行谈论,一种是paddle官方的数据集,另一种是如何自己制作所需的数据集。原创 2020-05-11 11:51:59 · 1576 阅读 · 0 评论 -
ICNet图像实时语义分割
ICNet实时语义分割原创 2020-05-10 09:58:58 · 1292 阅读 · 0 评论 -
PaddleX---Mask RCNN实例分割
PaddleX---Mask RCNN进行实例分割原创 2020-05-09 22:17:05 · 2264 阅读 · 0 评论 -
PaddleX---dEEPlABv3+语义分割
使用paddlex中的deeplabv3模型进行语义分割原创 2020-05-09 10:12:00 · 1674 阅读 · 0 评论 -
PaddleX---YOLOv3目标检测
YOLOv3进行昆虫目标检测原创 2020-05-08 16:24:46 · 5135 阅读 · 0 评论 -
PaddleX---MobileNetV3_ssld图像分类
MobileNetV3_ssld进行化妆品图像分类原创 2020-05-08 15:21:17 · 1567 阅读 · 1 评论 -
PaddleX---MobileNetV2图像分类
使用PaddleX---MobileNetV2进行蔬菜图像分类原创 2020-05-07 21:53:10 · 1001 阅读 · 1 评论 -
PaddleX---Faster RCNN目标检测
Faster RCNN对昆虫数据集进行检测原创 2020-05-05 22:13:19 · 2212 阅读 · 2 评论 -
PaddleHub一键动物识别
使用PaddleHub现有的两个动物识别模型resnet50_vd_animals和mobilenet_v2_animals进行百度自制数据集进行动物识别原创 2020-05-02 22:18:49 · 1412 阅读 · 4 评论 -
paddlepaddle陪伴的一星期
班班最美,飞桨最棒!...原创 2020-04-28 22:13:46 · 199 阅读 · 0 评论 -
DAY5综合大作业
综合大作业展示原创 2020-04-28 15:05:52 · 348 阅读 · 0 评论 -
DAY4之PaddleHub《青春有你2》进行二分类
直接使用预训练模型进行二分类原创 2020-04-27 20:55:46 · 353 阅读 · 0 评论 -
DAY4-PaddleHub体验
PaddleHub体验,一键识别情感分析,口罩检测,人体抠图,人体部件检测原创 2020-04-26 21:30:06 · 269 阅读 · 0 评论 -
DAY2《青春有你2》选手信息爬取
《青春有你2》选手信息爬取原创 2020-04-25 15:32:40 · 449 阅读 · 0 评论 -
DAY3《青春有你2》选手数据分析
根据DAY2所爬取的图片,对数据进行分析原创 2020-04-24 16:05:56 · 980 阅读 · 0 评论 -
Day1作业二查找特定名称文件
作业二:遍历”Day1-homework”目录下文件;找到文件名包含“2020”的文件;将文件名保存到数组result中;按照序号、文件名分行打印输出。注意:提交作业时要有代码执行输出结果。#导入OS模块import os#待搜索的目录路径path = "Day1-homework"#待搜索的名称filename = "2020"#定义保存结果的数组resu...原创 2020-04-23 11:33:40 · 1251 阅读 · 0 评论 -
DAY1 作业之用python实现99乘法表输出
DAY1 作业之用python实现99乘法表输出原创 2020-04-23 11:18:55 · 496 阅读 · 0 评论 -
使用PaddleHub进行图像分类
使用PaddleHub进行图像分类图像分类是计算机视觉的重要领域,目标是将图像分类到预定义的标签。本文以Kaggle的猫狗分类数据集为例子,来做PaddleHub图像分类任务。PaddleHub可以使用关键字进行检索模型匹配,找到自己需要的预训练模型'''通过关键字在服务端检索匹配的模型,以关键字resnet为例'''!hub search resnetstep1 加载...原创 2020-04-21 13:21:37 · 1353 阅读 · 0 评论 -
学习记录之PaddleHub一键式口罩检测
基于PaddleHub口罩检测示例原创 2020-04-19 22:25:53 · 1451 阅读 · 0 评论 -
初识神经网络之手写数字识别
神经网络之手写数字识别转载 2020-04-19 17:21:12 · 1903 阅读 · 0 评论 -
学习记录之车辆识别
车辆识别原创 2020-04-18 20:55:56 · 641 阅读 · 1 评论 -
学习记录之数据可视化
学习记录之数据可视化学习目的1.爬丁香园数据2.可视化原创 2020-05-07 21:53:58 · 287 阅读 · 0 评论 -
学习记录之手势识别
使用网上公开数据集,实现手势识别任务原创 2020-04-18 11:14:24 · 1332 阅读 · 0 评论 -
学习记录之---绘制饼图
学习目的:1. 接上篇文章解释其中一组代码2.使用pyecharts 做饼图原创 2020-04-18 11:57:29 · 246 阅读 · 0 评论