哪些机器学习模型需要归一化

归一化是对连续特征来说的。那么连续特征的归一化,起到的主要作用是进行数值缩放。数值缩放的目的是解决梯度下降时,等高线是椭圆导致迭代次数增多的问题。

一、概率模型\树模型 不需要归一化

而xgboost等树模型是不能进行梯度下降的,因为树模型是阶越的,不可导。树模型是通过寻找特征的最优分裂点来完成优化的。由于归一化不会改变分裂点的位置,因此xgboost不需要进行归一化。
参考《xgboost使用之前是否需要对数据进行归一化处理 或者 ONEHOT处理?》

从概率模型角度,概率模型不关心变量值,而关心变量的分布、变量之间的条件概率。这类模型像决策树、随机森林。
关于为什么决策树和随机森林是概率模型,我觉得可以从《关于sklearn决策树和随机森林的predict_proba方法的原理解释》得到解释

二、关心变量值、使用梯度下降的算法,需要归一化

如逻辑斯特回归(logistic regression)、支持向量机(svm)、集成学习(adaboost)、KNN、K-Means等算法。

三、汇总

需要不需要
LR(线性回归、逻辑回归)决策树
SVM(支持向量机)随机森林
KNN朴素贝叶斯
K-MeansXGBoost
高斯过程lightGBM
AdaBoostGBDT
神经网络
LSTM

参考《哪些算法需要进行数据归一化?》

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值